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1. I NTRODUCTION

In the literature, there are several methods of solving the integral equations, we put in place a
new idea in order to simplify the problem, inspired by the method of Adomian. In this paper, we
propose a new approach based on the Adomian decompositional method (ADM) [3, 4, 5, 6, 8, 9]
to solve the linear integral equations of Fredholm and second-type Volterra [1, 2, 13, 14, 16]. In
doing so, we obtain interesting results.

2. THE NEW ADOMIAN APPROACH FOR FREDHOML LINEAR INTEGRAL EQUATIONS

SECOND TYPE

2.1. Description of the new Adomian approach.Let us consider the following Fredholm
integral equation second kind:

(2.1) ϕ (x) = f (x) + λ

β∫
α

K (x, t) ϕ (t) dt, λ > 0

Whereϕ is the unknown function,K (x, t) is the kernel of the integral equation andx, t ∈
[α, β] ⊂ R, K (x, t) ∈ C (Ω) whith Ω = [α, β]× [α, β] .. Taking

(2.2) h (x) =

β∫
α

K (x, t) ϕ (t) dt

we get:

(2.3) ϕ (x) = f (x) + λh (x)

Then

h (x) =

β∫
α

K (x, t) (f (t) + λh (t)) dt

(2.4) ⇔ h (x) =

β∫
α

K (x, t) f (t) dt

︸ ︷︷ ︸
l(x)

+ λ

β∫
α

K (x, t) h (t) dt

(2.4) is the canonical form of Adomian. Let’s look for the solution of the equation in the

form of a convergent series

(
+∞∑
n=0

hn (x)

)
, we obtain the relationship

+∞∑
n=0

hn (x) = l (x) + λ

β∫
α

K (x, t)

(
+∞∑
n=0

hn (t)

)
dt

then we get the following Adomian algorithm:

(2.5)


h0 (x) = l (x)

hn+1 (x) = λ

β∫
α

K (x, t) hn (t) dt, n ≥ 0
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2.2. Convergence of the algorithm.

Theorem 2.1.If f ∈ C ([α, β]) andK ∈ C (Ω) withΩ = [α, β]×[α, β] then∀t ∈ [α, β] ,∃m >
0 such that|f (t)| ≤ m and∀ (x, t) ∈ [α, β] × [α, β] ,∃M > 0 such that|K (x, t)| ≤ M, and

the series

(
+∞∑
n=0

hn (x)

)
is convergent and the solution of the equation

ϕ (x) = f (x) + λ

β∫
α

K (x, t) ϕ (t) dt

is
ϕ (x) = f (x) + λh (x)

exists and is unique.

Proof. The existence of the solution of the equationϕ (x) = f (x) + λ

β∫
α

K (x, t) ϕ (t) dt has

been proved in [15]

Let’s show that the series

(
+∞∑
n=0

hn (x)

)
is convervent, we obtain successively the following

inequalities, wherem = sup
x∈[α,β]

f (x) etM = sup
(x,t)∈[α,β]×[α,β]

K (x, t):

|h0 (x)| ≤ mM |β − a|

|h1 (x)| ≤ λ
(mM |β − a|)2

2!

|h2 (x)| ≤ λ2 (mM |β − a|)3

3!

|h3 (x)| ≤ λ3 (mM |β − a|)4

4!
....

|hn (x)| ≤ λn (mM |β − a|)n+1

(n + 1)!
⇒

+∞∑
n=0

|hn (x)| ≤ 1

λ

+∞∑
n=0

(mMλ |β − a|)n+1

(n + 1)!
=

1

λ
(exp (mMλ |β − a|)− 1)

then the series

(
+∞∑
n=0

|hn (x)|

)
is convergent and the serie the series

(
+∞∑
n=0

hn (x)

)
is conver-

gent too.
Let us consider two different solutions of (2.1)φ (x) andϕ (x) .
Let’s apply the Adomian method to bothφ (x) andϕ (x) two functions supposed different,

then it becomes:φ (x) =
+∞∑
n=0

φn (x) andϕ (x) =
+∞∑
n=0

ϕn (x) solutions of (2.1)

⇒ 
φ0 (x) = f (x)

φn+1 (x) = λ

β∫
α

K (x, t) φn (t) dt, n ≥ 0
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and 
ϕ0 (x) = f (x)

ϕn+1 (x) = λ

β∫
α

K (x, t) ϕn (t) dt, n ≥ 0

so by making the difference of the two series, we get:
φ0 (x)− ϕ0 (x) = f (x)− f (x) = 0

φn+1 (x)− ϕn+1 (x) = λ

β∫
α

K (x, t) (φn (t)− ϕn (t)) dt, n ≥ 0

so we get: {
φ0 (x) = ϕ0 (x)
φn (x) = ϕn (x) , n ≥ 1

⇒ ∀x ∈ [α, β] , we obtain: φ (x) = ϕ (x) ,which is impossible because by hypothesis
φ (x) 6= ϕ (x). So they are necessarily equal and we getφ (x) = ϕ (x) .

2.3. Applications.

2.3.1. Example 1.Let us consider the following linear integral of Fredholm second kind:

(2.6) ϕ (x) = x +

1∫
0

(xt ln t) ϕ (t) dt

ϕ (x) = f (x) + h (x)
where

h (x) =

1∫
0

(xt ln t) ϕ (t) dt.

Then we get:h (x) =

1∫
0

(xt ln t) f (t) dt +

1∫
0

(xt ln t) h (t) dt. Let’s look for the solution of

the equation in the form of a convergent series

(
+∞∑
n=0

hn (x)

)
and we get the following Adomian

algoritm: 
h0 (x) =

1∫
0

(xt ln t) f (t) dt

hn+1 (x) =

1∫
0

(xt ln t) hn (t) dt ; n ≥ 0

Let us calculate the following terms:h0 (x) , h1 (x) , h2 (x) , h3 (x) , ...
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h0 (x) = −1

9
x

h1 (x) =

(
1

9

)2

x

h2 (x) = −
(

1

9

)3

x

...

hn (x) =

(
−1

9

)n+1

x

We obtain:

h (x) =
+∞∑
n=0

(
−1

9

)n+1

x = − 1

10
x.

Hence the exact solution of (2.6) is:

ϕ (x) = x− 1

10
x =

9

10
x.

2.3.2. Example 2.Let us consider the following linear integral of Fredholm second kind:

(2.7) ϕ (x) = x +
1

2

1∫
0

(x− t) ϕ (t) dt

We obtain:

ϕ (x) = f (x) +
1

2
h (x) with h (x) =

1∫
0

(x− t) ϕ (t) dt

we get:

h (x) =

1∫
0

(x− t)

(
f (t) +

1

2
h (t)

)
dt

⇒ 
h0 (x) =

1

2
x− 1

3

hn+1 (x) =
1

2

1∫
0

(x− t) hn (t) dt ; n ≥ 0

Let us calculate the following terms:h0 (x) , h1 (x) , h2 (x) , h3 (x) , ...
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h0 (x) =
1

2
x− 1

3

h1 (x) = − 1

24
x

h2 (x) =
1

144
− 1

96
x

h3 (x) =
1

1152
x

h4 (x) =
1

4608
x− 1

6912

h5 (x) = − 1

55296
x

h6 (x) =
1

331775
− 1

221184
x

...

h2n (x) =

(
− 1

48

)n(
1

2
x− 1

3

)
; n ≥ 0

h2n+1 (x) =

(
− 1

48

)n(
− 1

24

)
x; n ≥ 0

We obtain:

⇒


h (x) =

(
1

2
x− 1

3

) +∞∑
n=0

(
− 1

48

)n

− 1

24

+∞∑
n=0

(
− 1

48

)n

x

=
22

49
x− 16

49
Then, we obtain the exact solution of the equation (2.7):

ϕ (x) =
60

49
x− 8

49
.

2.3.3. Example 3.Let us consider the following linear integral of Fredholm second kind:

(2.8) ϕ (x) = x +
1

2

1∫
0

xt2ϕ (t) dt

ϕ (x) = f (x) + 1
2
h (x)

Where

h (x) =

1∫
0

xt2ϕ (t) dt

⇒ h (x) =

1∫
0

xt2f (t) dt +
1

2

1∫
0

xt2h (t) dt


h0 (x) =

1∫
0

xt3dt:
1

4
x

hn+1 (x) =
1

2

1∫
0

xt2hn (t) dt
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Let us calculate the following terms:h0 (x) , h1 (x) , h2 (x) , h3 (x) , ...



h0 (x) =

(
1

4

)
x

h1 (x) = 1
32

x =
1

8
h0 (x)

h2 (x) = 1
256

x =

(
1

8

)2

h0 (x)

h3 (x) =

(
1

8

)3

h0 (x)

...

hn (x) =

(
1

8

)n

h0 (x) ; n ≥ 0

We obtain:

h (x) = h0 (x)
+∞∑
n=0

(
1

8

)n

⇒

h (x) =
2

7
x

Hence the exact solution of (2.8) is:

ϕ (x) =
8

7
x.

2.3.4. Example 4.Let us consider the following linear integral of Fredholm second kind:f (x)

(2.9) ϕ (x) = e2x − 1

2
ex (e− 1) +

1

2

1∫
0

ex−tϕ (t) dt

ϕ (x) = f (x) + 1
2
h (x)

Whereh (x) =

1∫
0

ex−tϕ (t) dt

We obtain:h (x) =

1∫
0

ex−tf (t) dt + 1
2

1∫
0

ex−th (t) dt


h0 (x) =

1∫
0

ex−tf (t) dt

hn+1 (x) =
1

2

1∫
0

ex−thn (t) dt ; n ≥ 0

Calculating:h0 (x) , h1 (x) , h2 (x) , h3 (x) , ...
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h0 (x) =

1∫
0

ex−t
(
e2t − 1

2
et (e− 1)

)
dt

h1 (x) =
1

2

1∫
0

ex−t
(

1
2
et (e− 1)

)
dt

h2 (x) =
1

2

1∫
0

ex−t
(

1
4
et (e− 1)

)
dt

h3 (x) =
1

2

1∫
0

ex−t
(

1
8
et (e− 1)

)
dt

...

hn (x) =

(
1

2

)n+1

ex (e− 1) ∀ n ≥ 0

We obtain:

h (x) =
ex (e− 1)

2

+∞∑
n=0

(
1

2

)n

= ex (e− 1)

Hence the exact solution exact of (2.9) is:

⇒ ϕ (x) = e2x.

3. THE NEW ADOMIAN APPROACH FOR VOLTERRA LINEAR INTEGRAL EQUATIONS

SECOND TYPE

3.1. Description of the new approach.Let us consider the following Volterra integral equa-
tion second king:

(3.1) ϕ (x) = f (x) + λ

x∫
α

K (x, t) ϕ (t) dt, λ > 0, T < +∞

Wherex, t ∈ [α, T ] ⊂ R, K (x, t) ∈ C ([α, T ]× [α, T ]) andf ∈ C ([α, T ]) . Taking

h (x) =

x∫
α

K (x, t) ϕ (t) dt

we get

ϕ (x) = f (x) + λh (x)

.
Then

h (x) =

x∫
α

K (x, t) (f (t) + λh (t)) dt
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http://ajmaa.org


AN ANALYTICAL SOLUTION OF INTEGRAL EQUATIONS OF FREDHOLM AND VOLTERRA SECOND KIND 9

⇒

(3.2) h (x) =

x∫
α

K (x, t) f (t) dt + λ

x∫
α

K (x, t) h (t) dt

(3.2) is the canonical form of Adomian. Let’s look for the solution of (3.2) in the form of a

convergent series

(
+∞∑
n=0

hn (x)

)
, we obtain the relationship

+∞∑
n=0

hn (x) =

x∫
α

K (x, t) f (t) dt + λ

x∫
α

K (x, t)

(
+∞∑
n=0

hn (t)

)
dt

then (3.3) is the algorithm of Adomian:

(3.3)


h0 (x) =

x∫
α

K (x, t) f (t) dt

hn+1 (x) = λ

x∫
α

K (x, t) hn (t) dt; n ≥ 0

3.2. Convergence of the algorithm.

Theorem 3.1. If f ∈ C ([α, T ]) and K ∈ C (Ω) whith Ω = [α, T ] × [α, T ] then ∀t ∈
[α, T ] ,∃m > 0 such that|f (t)| ≤ m and ∀ (x, t) ∈ [α, T ] × [α, T ] ,∃M > 0 such that

|K (x, t)| ≤ M, and the series

(
+∞∑
n=0

hn (x)

)
is convergent and the solution of the equation

ϕ (x) = f (x) + λ

x∫
α

K (x, t) ϕ (t) dt

is

ϕ (x) = f (x) + λh (x)

exists and is unique.

Proof. The existence of the solution of the equationϕ (x) = f (x) + λ

x∫
α

K (x, t) ϕ (t) dt has

been proved in [15]
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Let’s show that the series

(
+∞∑
n=0

hn (x)

)
is convervent, we obtain successively the following

inequalities, wherem = sup
x∈[α,T ]

f (x) etM = sup
(x,t)∈[α,β]×[α,T ]

K (x, t):

|h0 (x)| ≤ mM |x− a|

|h1 (x)| ≤ λ
(mM |x− a|)2

2!

|h2 (x)| ≤ λ2 (mM |x− a|)3

3!

|h3 (x)| ≤ λ3 (mM |x− a|)4

4!
....

|hn (x)| ≤ λn (mM |x− a|)n+1

(n + 1)!
⇒

+∞∑
n=0

|hn (x)| ≤ 1

λ

+∞∑
n=0

(mMλ |x− a|)n+1

(n + 1)!
=

1

λ
(exp (mMλ |x− a|)− 1)

then the series

(
+∞∑
n=0

|hn (x)|

)
is convergent and the series the series

(
+∞∑
n=0

hn (x)

)
is con-

vergent too.
Let us consider two differents solutions of (2.1),φ (x) andϕ (x) .
Let’s apply the Adomian method to bothφ (x) andϕ (x) two functions supposed different,

then it comes:φ (x) =
+∞∑
n=0

φn (x) andϕ (x) =
+∞∑
n=0

ϕn (x) solutions of (2.1).

⇒ 
φ0 (x) = f (x)

φn+1 (x) = λ

β∫
α

K (x, t) φn (t) dt, n ≥ 0

and 
ϕ0 (x) = f (x)

ϕn+1 (x) = λ

β∫
α

K (x, t) ϕn (t) dt, n ≥ 0

so by making the difference of the two series, we get:
φ0 (x)− ϕ0 (x) = f (x)− f (x) = 0

φn+1 (x)− ϕn+1 (x) = λ

β∫
α

K (x, t) (φn (t)− ϕn (t)) dt, n ≥ 0

so we get: {
φ0 (x) = ϕ0 (x)
φn (x) = ϕn (x) , n ≥ 1

⇒ ∀x ∈ [α, β] , we obtain: φ (x) = ϕ (x) ,which is impossible because by hypothesis
φ (x) 6= ϕ (x). So they are necessarily equal and we getφ (x) = ϕ (x) .

3.3. Applications.
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3.3.1. Example 1.Let us consider the following linear integral equation of Volterra second
type:

(3.4) ϕ (x) = ex +

x∫
0

ex−tϕ (t) dt

Let us takeh (x) =

x∫
0

ex−tϕ (t) dt, we getϕ (x) = ex + h (x)

⇒ h (x) =

x∫
0

ex−t (et + h (t)) dt

⇒

h (x) =

x∫
0

exdt +

x∫
0

ex−th (t) dt

And we get the following Adomian Algorithm:
h0 (x) =

x∫
0

exdt: xex

hn+1 (x) =

x∫
0

ex−thn (t) dt; n ≥ 0

Calculating some terms:h0 (x) , h1 (x) , h2 (x) , h3 (x) , ...

h0 (x) = xex

h1 (x) =
1

2
x2ex

h2 (x) =

x∫
0

ex−t 1
2
t2etdt:

1

6
x3ex

h3 (x) =

x∫
0

ex−t 1
6
t3etdt:

1

24
x4ex

h4 (x) =

x∫
0

ex−t 1
24

t4etdt :
1

120
x5ex

...

hn (x) =
xn+1

(n + 1)!
ex

We obtain:

h (x) = exp (x)
+∞∑
n=0

xn+1

(n + 1)!
= (exp (x)− 1) exp (x)

Hence the exact solution exact of (3.4) is:

ϕ (x) = exp (2x) .
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3.3.2. Example 2.Let us consider the following linear integral equation of Volterra second
type:

(3.5) ϕ (x) = x +
1

2

x∫
0

(x− t) ϕ (t) dt

Takingh (x) =

x∫
0

(x− t) ϕ (t) dt, we getϕ (x) = x +
1

2
h (x)

Whereh (x) =

x∫
0

(x− t)

(
t +

1

2
h (t)

)
dt, we obtain:

h (x) =

x∫
0

(x− t) tdt− 1

2

x∫
0

(x− t) h (t) dt

And we get the following Adomian Algorithm:


h0 (x) =

x∫
0

(x− t) tdt

hn+1 (x) =
1

2

x∫
0

(x− t) hn (t) dt; n ≥ 0

Calculating some terms:h0 (x) , h1 (x) , h2 (x) , h3 (x) , ...

(3.6)



h0 (x) =

x∫
0

(x− t) tdt = 1
3!
x3

h1 (x) =
1

2

x∫
0

(x− t)
(

1
6
t3
)
dt:
(

1
2

)
x5

5!

h2 (x) =
1

2

x∫
0

(x− t)
(

1
240

t5
)
dt =:

(
1
2

)2 x7

7!

h3 (x) =
1

2

x∫
0

(x− t)
(

1
20 160

t7
)
dt:
(

1
2

)3 x9

9!

h4 (x) =
1

2

x∫
0

(x− t)
(

1
2903 040

t9
)
dt:
(

1
2

)4 x11

11!

...

hn (x) =

(
1

2

)n
x2n+3

(2n + 3)!
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⇒



h (x) =
+∞∑
n=0

hn (x)

=
+∞∑
n=0

(
1

2

)n
x2n+3

(2n + 3)!

=
+∞∑
n=0

(
1

2

)n
x2(n+1)+1

(2 (n + 1) + 1)!

=
+∞∑
n=0

0
B@

vuut1

2

1
CA

2(n+1)+1

0
B@

vuut1

2

1
CA

3

x2(n+1)+1

(2 (n + 1) + 1)!

=
+∞∑
n=0

0
B@

vuut1

2

1
CA

2(n+1)+1

1

2

vuut1

2

x2(n+1)+1

(2 (n + 1) + 1)!

= 2
√

2
+∞∑
p=1

(√
1

2
x

)2p+1
1

(2p + 1)!

= 2
√

2

(
sinh

(√
1

2
x

)
−
√

1

2
x

)

= 2
√

2 sinh

(√
1

2
x

)
− 2x

We obtain:

h (x) = 2
√

2 sinh

(√
1

2
x

)
− 2x

Hence the exact solution exact of (3.5) is:

ϕ (x) =
√

2 sinh

(
x√
2

)
.

3.3.3. Example 3.Let us consider the following linear Volterra integral equation second kind:

(3.7) ϕ (x) = x− 1

4
x4 +

x∫
0

(
x2 − t2

)
ϕ (t) dt

By posing:

h (x) =

x∫
0

(x2 − t2) ϕ (t) dt

we get:

⇒ h (x) =
1

4
x4 − 1

70
x7 +

x∫
0

(
x2 − t2

)
h (t) dt
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Let’s look for the solution of (3.7), in the form of a convergent series: h (x) =
+∞∑
n=0

hn (x)

Let’s calculate some of the terms of the series

(
+∞∑
n=0

hn (x)

)
, for that use the modified Ado-

mian Algorithm:h0 (x) , h1 (x) , h2 (x) , h3 (x) , h4 (x) , ...



h0 (x) = 1
4
x4

h1 (x) = − 1
70

x7 +

x∫
0

(x2 − t2) h0 (t) dt

hn+1 (x) =

x∫
0

(x2 − t2) hn (t) dt; n ≥ 1:



h0 (x) = 1
4
x4

h1 (x) = − 1
70

x7 +

x∫
0

(x2 − t2) h0 (t) dt

hn+1 (x) =

x∫
0

(x2 − t2) hn (t) dt; n ≥ 1:

We have, after calculation:

h0 (x) = 1
4
x4

h1 (x) = − 1
70

x7 +

x∫
0

(x2 − t2)
(

1
4
t4
)
dt = 0

hn+1 (x) =

x∫
0

(x2 − t2) hn (t) dt = 0, n ≥ 1:

So we get:

h (x) = h0 (x) =
1

4
x4

Hence the exact solution of (3.7) is:

ϕ (x) = x− 1

4
x4 +

1

4
x4 = x.

.

3.3.4. Example 4.Let us consider the following integral equation:

(3.8) ϕ (x) =
4

5
x +

1

x4

x∫
0

t3ϕ (t) dt

wherex > 0.
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By posingh (x) =
1

x4

x∫
0

t3ϕ (t) dt, we get:

(3.9) h (x) =
1

x4

x∫
0

t3f (t) dt +

x∫
0

t3

x4
h (t) dt

By applying the Adomian algorithm to (3.9), we obtain:
h0 (x) =

x∫
0

t3

x4
f (t) dt

hn+1 (x) =

x∫
0

t3

x4
hn (t) dt; n ≥ 0

Let’s calculate some terms:h0 (x) , h1 (x) , h2 (x) , h3 (x) , ...

h0 (x) =

x∫
0

t3

x4

(
4
5
t
)
dt: 4

25
x

h1 (x) =

x∫
0

t3

x4

(
4
25

t
)
dt: 4

125
x

h2 (x) =

x∫
0

t3

x4

(
4

125
t
)
dt = 4

625
x

h3 (x) =

x∫
0

t3

x4

(
4

625
t
)
dt: 4

3125
x

...

hn (x) = 4x

(
1

5

)n+2

; n ≥ 0

We obtain:

h (x) =
+∞∑
n=0

4x

(
1

5

)n+2

=
1

5
x

Hence the exact solution exact of (3.8) is:

ϕ (x) =
4

5
x +

1

5
x = x.

4. CONCLUSION

In this paper, we propose a new approach of the Adomian method for the integral equations
of Fredholm and Volterra of the second kind, then prove the convergence of the algorithm
associated with this new approach. Finally, we used this new approach to solve several examples
successfully. Also, we can say that this new approach of the Adomian method is a good tool for
these types of equations.
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