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2 B. ALVAREZ-SAMANIEGO AND A. MERINO

1. INTRODUCTION

The study of homeomorphisms between compact countable subsets of a topological space
and countable ordinal numbers was began by S. Mazurkiewicz and W. Sierpiriski in [10]. More
precisely, they showed that for every compact countable subset:efianensional Euclidean
space, there exists a homeomorphism between this subset and some countable ordinal number.
Moreover, a detailed proof of this last result when the Euclidean space, under consideration, is
the real line, was given by the authorsl(in [1]. Some related propositions can also be found in [3,
4,/9,[7]. The main result of Section 2 is Theorem 2.5 below, which extends Lemma 316 in [1]
for an arbitrary metric space. It is worth mentioning that Theorem R2lin [2] considers compact,
dispersed topological spaces with some additional properties, while Theorjem 2.5 below regards
the case of a metric space. Furthermore, it is stateld in [8], without proof, that it is a known fact
which can be proved by induction thitis a countable locally compact space if and only if
Y is homeomorphic to some countable ordinal number (with the order topology). In this way,
Lemmag 2.1, 2|3 ar{d 2.4, proved in Secfipn 2, are the comprehensive induction steps required
in the Transfinite Induction used in the proof of Theofem 2.5. Seftion 3 is devoted to study the
cardinality of the set of all the equivalence classé&g, up to homeomorphisms, of compact
countable subsets of a metric spddé, d). Proposition$ 3]1 ar[d 3.2 are used in the proof of
Theorenj 3.3, where it is shown that for all metric sp&€ed), the cardinality of’#% is less than
or equal toX;. Proposition$ 3]4 to 3.6 shows that for all cardinal number X, there exists a
metric spacéE,, d,;) such that the cardinality of the séfy, is equal tox. Propositior 3J7 says
that there exists a countable metric spéEgi) such tha{.#| = R,. Finally, Propositiof 38
asserts that there is an uncountable metric spacé.) such that. 7| = X,.

We denote byOR, the class of all ordinal numbers. In additianyepresents the set of all
natural numbers and, is the set of all countable ordinal numbers. Further, we consider any
ordinal number as being a topological space, endowed with its natural order topology. In order
to describe this last topology, for all 5 € OR such thatx < 3, we write

(o, 3) :=={y € OR: ax < v < 3},
[a, () :={y€ OR:a <~ < G}

Thus, for anyy € OR, the natural order topology faris given by the following topological
basis

{(8,7): 8,7 € OR, B <y <45tU{[0,3):8€OR, B <6}
Next definition was first introduced by G. Cantorlin [5].

Definition 1.1 (Cantor-Bendixson’s derivative) et A be a subset of a topological space. For a
given ordinal numbex € OR, we define, using Transfinite Recursion, theh derivativeof
A, written A, as follows:

o A0 = 4,

o A+ — (A®)Y for all ordinal numbep3,

o AW = (1) A, for all limit ordinal number\ + 0,

<A

where B’ denotes the derived set &f, i.e., the set of all limit points (or accumulation points)
of the subseB.

Remark 1.1. Given any subset of @; topological space, its derived set is closed. As a con-
sequence of this last result, we have that' ifs a closed subset of’ B topological space, then
(F(),cor is a decreasing family of closed subsets.
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Moreover,P(C') and|C| denote, respectively, the power set and the cardinality of th€'set
We also writeA ~ B if there is a homeomorphism between the topological spdcasd B.
If (X, ) is atopological space, thé@y represents the set of all compact countable subsets of
X, where a countable set is either a finite set or a countably infinite setyzand= Kx/ ~
denotes the set of all the equivalence classes, up to homeomorphisms, of eleniégtslbf
(E,d) is a metric spacey € E andr > 0, we denote byB(x,r) and B[z, r] the open and
closed balls, centered atwith radiusr > 0, respectively. Furthermore, for all # &, p,- is
used to designate the discrete metric on thé’satVe now give the following definition.

Definition 1.2 (Cantor-Bendixson’s characteristid)et D be a subset of a topological space
such that there exists an ordinal numBee OR with the property thaD® is finite. We say
that(a,p) € OR x w is theCantor-Bendixson characteristaf D if « is the smallest ordinal
number such thab(® is finite and|D®| = p. In this case, we writ€ B(D) = (a, p).

For the sake of completeness, we give here the proof of the following theorem, which was
first introduced by G. Cantor in[6] for am-dimensional Euclidean space. It deserves to point
out that there are some known extensions, considering topological spaces, of the next result.

Theorem 1.1.Let (X, 7) be a Hausdorff space. For alt’ € Ly, there existsx € w; such that
K@ s a finite set.

Proof. Let K € Kx. We suppose, for a contradiction, that for all countable ordinal numbper

KO is an infinite set. Letr € w,. Sincea + 1 € wy, we have thaf{ (“*Y is an infinite set, and

thus it is a nonempty set. By Remark |[LiL{*+!) C K. Then,K @+ is a countable set. Using

the fact that every nonempty, compact, perfect, Hausdorff space is uncountable, we obtain that
K(@+2) £ K+ Thus, by using again Remark [.1, we g&t+2 ¢ K©+1), We now define

K, =Kt (KO £ g

Then,{K, : v € w;} is a family of nonempty sets. By the Axiom of Choice, there exists a
function

frw — UK“/

YEW1

such that for alty € wy, f(v) € K.,. We claim thatf is injective. In fact, let3, 6 € w; be such
that < §. Thus,5 +2 < + 1. By RemarK 111,

KO+t ¢ g#+2),
Then,
KpN K; = (KD S KO) 0 (K0 L KO = g,
Since f(B) € Kz and f(d) € Kj, it follows that f(3) # f(6). Hence,f is a one-to-one

function. Therefore,

Ny = |w1|§ §|K|§N0,

Jx

YEW1

giving a contradiction. This finishes the proof of the theorgm.

Remark 1.2. Last theorem implies that ifX, 7) is a Hausdorff space and € Ky, then
CB(K) is well-defined and furthermoi@3(K) € w; x w.
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2. EXISTENCE OF HOMEOMORPHISMS
Lemma 2.1.If (£, d) is a metric spacek” € Kg, andCB(K) = (1, 1), then
K~w+1.

Proof. SinceCB(K) = (1, 1), there exists € E such that” = {z}. Moreover, we see that
K = KO isinfinite. Then,K ~. K’ is a countably infinite set. Thus, there is a bijectioinom
K ~. K’ ontow. We now define the following function

[T K —w+1
Zkﬁf@:{gaim%%

w, if z=ux.

From the definition off, we obtain directly thaf is a bijective function. We will now show
that f is continuous. Since every point belongingifo. K" is an isolated point ok, it follows
that f is continuous at every point df ~. K’. Thus, it remains to show the continuity pft the
pointz. We take an open basic neighborhdoaf f(x) = w with regard to the order topology
of w + 1. We will now show thatf~! (V) is a neighborhood of. If V' = [0, 3), we have that
f=w+1. Thus,V =w+1andf (V) = K is a neighborhood of. On the other hand, if
V = (n,a), then
n<w<a<w-+4l.

Thereforen € w anda = w + 1. We now define the following set
A={z€ K: f(z) <n}.

Thus,x ¢ A. Moreover, sinceg is an injective function, we see thdtis a finite set. Let us take
r:=min{d(z,z): z € A} > 0. Then,

KN B(x,r) C fH(n,w+1)).
In fact, if z € K satisfiesd(z,z) < r, thenz ¢ A. Hence,f(z) > n. In addition, using the
definition of functionf, we see directly thaf(z) < w + 1. Thus, f(z) € (n,w +1) = V.
Consequentlyf ~'((n,w + 1)) is a neighborhood af. Therefore,f is continuous at the point
x. We thus conclude that is continuous at every point of its domain. Thens a continuous

function. Finally, sincef is a continuous bijective functior) is compact andv + 1 is a
Hausdorff space, it follows thgtis a homeomorphism. In conclusiolf, ~ w + 1. 1

The next lemma extends Lemma 3.4lin [1] to the case of an arbifiaigpological space.

Lemma 2.2. Let K and F' be closed subsets of’& topological space such that N F' =
K nint(F), whereint(F) is the set of all interior points of. Then, for alla € OR, we have
that

(2.1) (KNF)® =K®nF

Proof. We will use Transfinite Induction.
e The casex = 0 follows directly.
e We assume that the result holds for a givere OR, i.e., (K N F)® = K N F,
Then,
(KN F)e) = (KN F)®) = (K9 nF) C(KYYnF C Ke*YNF,

where in the last expression we have used the factAhatclosed. To show the other
inclusion, letz € K@tV N F. SinceK is a closed subset of B topological space,
using Remark 1]1, it follows that € K’ N F = K Nint(F). Therefore, there exists a
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neighborhood’ of x such thaty C F. LetV be a neighborhood of. We now take
W :=UnNV.We see thall is also a neighborhood of Then,

(W\{x})ﬁK @)

=(W~{z))nK“nF
= (W~ {z})n(KNF)
C(V~A{z}) (KN F).

Hencexr € (KNF)©t), Thus, K@tNF C (KNF)©tD, Therefore( KNF)(@+D =
KethnF,

e Lastly, letA # 0 be a limit ordinal number. We assume that for@ale OR such that
B<\(KNF)® =K® NF. Hence,

(KNF)Y = (KNP =EDNF) = KPNF=KYnF
B<A B<A B<A
This finishes the proofy

Lemma2.3.Let(F, d) be a metric space and let > 1 be a countable ordinal number. Suppose
that for all ordinal number? € OR such that) < 8 < a and for all K € K with CB(K) =
(8,p) € OR xw, we have thall ~ w”-p+1. Then, forallK € Ky suchthaCB(K) = (a, 1),
we get

K~w*+1.

Proof. Let K € Kg be such tha€B(K) = («a, 1) with « > 1. Then, there exists € K with
K@ = {z}. We see that € K® C K”. Thus,z is an accumulation point &&’. Then, there
is a sequenceér, ) e, in K’ ~ {z} such that(d(x,, x)).c. IS a strictly decreasing sequence
converging td). Moreover, sincdd(z,z) € R: z € K} is a countable set, it follows that for
alln € w,

A, ={d(z,z) e R:z e K}°N(d(xpi1,),d(x,, 7))

is a nonempty set. Thereforéd,, : n € w} is a nonempty family of nonempty sets. By the
Axiom of Countable Choice, there exists a sequemgg,c., of real numbers such that for all
n e w,

d(zpi1,x) <1y < d(Tp, )
and for allz € K we have thatl(z, z) # r,. Thus, for alln € w, we define the following sets

Fy := B(x,10)",

Fo1:= Blz,r,] \ B(x,rm41)
and
K, =KnNE,.
We claim that for allh € w,
KNFE,=Knint(F,).

In fact, letn € w. We see immediately th& Nint(F,,) C KNF,. Reciprocally, let € KNF,.
We first consider the case when= 0. We obtain that € K andd(z,z) > ry. Sincez € K,
we have thati(z,z) # ro. Thus,ey := d(z,z) —ro > 0. Itis not difficult to see now that

B(z,e0) C Fy. Then,z € int(Fp). Hence, K N Fy € K Nint(Fp). We now consider the case
n € w~ {0}. We have that € K and

rn < d(z,x) <rpq.
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Sincez € K, we obtain thatl(z, z) # r, andd(z, ) # r,_1. We now take:,, := min{d(z, z)—
TnyTno1 — d(z,2)} > 0. We getB(z,¢,) C F,. Hence,z € int(F,,). Therefore, K N F,, C
K Nnint(F,).
We can now see that the fami{y<,, : n € w} has the following properties:
e SincekK is a closed subset df, we obtain that for alh € w, z,, € K,,.
e Foralln ew, K,, C K.
e Since the intersection of two closed subsets is also closed, we see thatfar all K,
is a closed subset.
e Since every closed subset of a compact space is compact, we have that:fer ail
K, is compact.
e Since for alln € w, K, is a countable set, we obtain that foralE w, K, € Kg.
e Foralln € w, K| # @. Infact, letn € w. By Lemma 2.2, we have thdt] =
(KN F,) = K'nF,. Moreover, since;,, € K' N F,,, we see that,, € K.
e Since{F, : n € w} is a pairwise disjoint family of sets, we obtain that the family of
sets{K,, : n € w} is also pairwise disjoint.
¢ \We have that
K = |H K, {z}.
new
In fact, since the sequenge, ), converges td), we see thak/
Then,

F,9{z} = E.

necw

H K v iz} = [H(KENF,)w{z}

new new

= (KﬂLﬂFn)Lﬂ{x}

new

—KnN (@an{x})

necw

=KNE=K.

e Foralln € w, K{*) = @. In fact, by Lemma 22, we see that for al w,
KY=(KNF)Y=KYNE, ={z}nE, =2.

e Using the fact that an infinite subset of a compact subset of a topological space has at
least a limit point in the compact subset, using also Refmafk 1.1 and the Cantor intersec-
tion theorem in a Hausdorff topological space, we see that the last assertion implies that
foralln € w, if CB(K,,) = (8,,pn) € OR x w, then0 < 5, < a andp,, € w ~\ {0}.

It follows from the hypothesis that for alt ¢ w, K, ~ w’ - p, + 1. By the Axiom of
Countable Choice, there is a sequef£g),c., of homeomorphisms such that for all€ w,
fn: K, — wP-p, +1is a homeomorphism of the topological spdcgontow’- - p, + 1. We
now define the following function

fTK—r714+1
fo(2), if z € Ko,

n—1
2= [ =1 W e+ 1+ ful2), i 2 € K, for somen € w {0},
k=0

T, if z=ux,
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where

T::Zwﬁk-pk :zsup{iwﬁk-pk:nEw}.

kcw k=0
Proceeding in a similar way to the proof of Lemma 3.3in [1], it is possible to showthat®
andf is a homeomorphism ok ontor + 1. Hence,K ~ w® + 1. 1

Lemma 2.4. Let (£, d) be a metric space. Let be a countable ordinal number such that
a > 0 and letp € w. We assume that for alt’ € K such thatlCB(K) = («, 1), we have that
K ~ w*+ 1. Then, for allK € Kg withCB(K) = (a,p), we get

K~w* - p+1.

Proof. Let K € Kg be suchtha€B(K) = («, p) with a > 0. As mentioned in the proof of the
previous lemma, we can show that w ~ {0}. Thus,

K(a) = {Io,ﬂfl, N ,l’p_l},

where for alli, j € {0,...,p — 1} such that # j, z; # z;. Forallm € {1,...,p — 1}, we
define

dp = min{d(zm,,z;) ER:0<j<p—1 and j#m}>0.
Letm € {1,...,p— 1}. Since
{d(z,z,) e R: 2z € K}
is a countable set, there exists > 0 such that
rm € {d(z,x,) ER:z€ K}N(0,d,,).
Thus, for allz € K, we have thatl(z, z,,,) # 7,,. We now define

Fo = Blxg, )
and
p—1
Fy:=E~ U B(zj,rj).
j=1
Moreover, for alln € {0,...,p — 1}, we also define
K, =KnNEF,.

We observe that for alt € {0,...,p — 1},
KN F, = K Nint(F).

In fact, letn € {0,...,p — 1}. Sinceint(F,) C F,, we see that{ N int(F,) C K N F,.
Reciprocally, giverr € K N F,,, we see that € K and we consider the following two cases:
e We first examine the situation whene {1,...,p — 1}. SinceF,, := Blz,,r,], we
have that
d(z,z,) < 1p.
In addition,z € K implies thatd(z, z,,) # r,. By takinge,, := r,, — d(z, z,,) > 0, we
obtain thatB(z,e,) C F),. Hencez € int(F),).
p—1
e We now assume that = 0. Using the fact that € F, := E ~ |J B(zj,r;), we
j=1
conclude thatfor alj € {1,...,p — 1},

d(z,x;) > ;.
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Furthermore, since € K, we see that for alf € {1,...,p — 1}, d(2,z;) # r;. We
now takesy := min{d(z,z;) —r; : 1 < j < p—1} > 0. Then,B(z,&9) C Fy.
In order to prove this last assertion, let € B(z,¢,). We now suppose, to derive
a contradiction, that there exisitse {1,...,p — 1} such thatd(w,z;) < r;. Then,
go+1i < d(z,z;) < d(z,w)+ dw,z;) < ey + 15, Which is a contradiction. Thus,
z € int(Fp).

Therefore, K N F,, C K Nint(F),).
Proceeding in a similar manner as in the proof of Lenimé 2.3, we can show that the family
{K, : 0 <n <p-— 1} satisfies the next properties:

Using Remark 1]1, we have that for alle {0,...,p — 1}, z,, € K.

Foralln € {0,...,p—1}, K, C K.

Foralln € {0,...,p— 1}, K,, is a closed subset df.

Since every closed subset of a compact space is compact, we obtain that/foe all
{0,...,p — 1}, K,, is compact.

e Foralln € {0,...,p—1}, K,, € Kg.

e {K,:0<n<p-—1}isa pairwise disjoint family of sets.

p—1
o K =4 K,
n=0
e Using Lemma 22, we conclude that for al {0,...,p — 1},
K =(KNF,)® =KYNFE, ={z,}.

e It follows from the last assertion that for alle {0,...,p — 1},CB(K,) = (a, 1).

By using the hypothesis, we see that forrakt {0,...,p — 1}, there exists a homeomorphism
gn: K, — w®+ 1 from the topological spacg’,, ontow® + 1. We now consider the following
function

g K —71+1

Y s g(z) = {go(z), if z € K,

w* n+14g,(2), if z€K,, forsomene {1,...,p—1},

wherer := w® - p. By a similar argument to the one used in the proof of Lenmp 2.3 above, we
obtain that functiory is a homeomorphism fromt” ontor + 1. Hence,K ~ w®-p+ 1. 1

Theorem 2.5. Suppose thatF, d) is a metric space. Let be a countable ordinal number such
thata > 0 and letp € w. If K € K satisfie B(K) = (a, p), then

K~w* p+1.

Proof. We proceed by Strong Transfinite Induction on the ordinal number 0. By Lem-
mag 2.1 anfl 2]4, the result holds for= 1. Now, leta € wy be such thaty > 1. We suppose
that the conclusion is true for all ordinal numbérsuch thatd < 8 < a. By Lemmag 2.3
and 2.4, the result is also valid far Thus, the theorem holds for all countable ordinal number
greater than zerg

Remark 2.1. The hypothesis about the countable cardinality of the ordinal numisecemmg 2.3,
Lemma[ 2.4 and Theorem 2.5 can be omitted. In factZifd) is a metric spacek € Kg,
(a,p) € OR x (w~ {0}) and K ~ w® - p + 1, thena € w;.
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3. CARDINALITY OF THE PARTITION

Let (X, 7) be atopological space. We consider thetSetof all compact countable subsets of
X. The set# := Kx/~ provides a partition of the séiy into disjoint equivalence classes,
more precisely,

Hx ={[K] € P(Kx): K € Kx},
where, for allK € Kx
[K] :={K,€Kx: K, ~K}.
The following two propositions will be used in the proof of Theoienj 3.3 below.

Proposition 3.1. Let (X, 7) be aT; topological space. For alK, K, € Kx such thatK; ~
K,, we have thal B(K) = CB(K>).

Proof. Let K1, K, € Kx be such that; ~ K, and letf: K; — K, be a homeomorphism
from K, onto K. We will first show that for all ordinal number € OR, K\* ~ K{*, where
f|K§a) is a homeomorphism between these two sets. In order to prove this last assertion, we use
below Transfinite Induction.
e In the case when = 0, we see thats\” = K, ~ K, = K\” andf = Flw: K9 -
K\ is a homeomorphism fromt” onto K\
e We now suppose that the result holds for a given ordinal numbee., K~ Ké“)
and f|K(a> is a homeomorphism betwedﬁfa) and Ké“). By Remar above, we

have thatk(*™) € K. Thus,
f( (a+1) ) f|K(a)( (a+1) ) f| a)(( ) ) _ (KQ(Q))/ _ K§a+l),

Then, f,.@m: K™Y — K**" is a homeomorphism fronik{**" onto K3**".
1
Therefore K {*™) ~ KtV
e Finally, let A # 0 be a limit ordinal number. We presume that for@lt OR such that
B <A, K{B) ~ Kéﬁ), wheref| s is a homeomorphism frorﬁ’f ontoK Slncef
1
is an injection, we have that

=/ <ﬂ K@) = () = (K7 =

BN BN B
Therefore.f| . is @ homeomorphism betweddl™ andK ", i.e., KV ~ K.

Then, for alla € OR, |K | = |K | We suppose thatB(K;) = (6,p) € OR x w. Thus,
3 is the smallest ordlnal number such th‘éf is finite. Furthermore, sincEK{ﬁ)| = p, we
obtain thaleéB)| |K | = p. With this, we conclude thatB(K») = (6,p) = CB(K1). 1

Proposition 3.2. Let (E, d) be a metric space and Idt, K, € Kg. If CB(K;) = CB(K>),
thenK1 ~ K.

Proof. LetCB(K;) = CB(K3) = («a, p), for some ordinal number and some € w.

e If « = 0, we have that{; and K, are both finite sets with elements, therefor&; ~
K.

e If @ > 0 andp € w, by Theorenj 2J5, we have that ~ w*-p+1andK; ~ w®-p+1,
thUSKl ~ Ks. 1

AJMAA Vol. 16, No. 2, Art. 12, pp. 1-11, 2019 AJMAA


http://ajmaa.org

10 B. ALVAREZ-SAMANIEGO AND A. MERINO

Proposition$ 3]1 arld 3.2 imply that for any metric spéEed), the partition ofKCy is fully
characterized by the Cantor-Bendixson characteristic.

Theorem 3.3.Let(FE, d) be a metric space. The cardinality &f% is less than or equal t&;.
Proof. We define the function

CB: Hy — w1 X w
[K] — CB([K]) = CB(K).

By Theore andjropositi.l, we see that funatiBiis well-defined. Moreover, Propo-
sition shows thatB is an injective function. Thus,

’:%/E’ < |w1 X (.U’ = \w1| = Nl- [ |

In general, we cannot strengthen the last result. To show this, we give the following three
propositions.

Proposition 3.4. For all n € w, there exists a metric spa¢é’,,, d,,) such thal 7z, | = n.

Proof. Letn € w ~\ {0}. We now consider the space, p,,), wherep,, is the discrete metric on
the setn := {0,...,n — 1}. Sincen is a finite set, we have that every subset.aé compact,
ie.,
K, =P(n).

Moreover, for allK € K,,, we see thak'(¥) = K is a finite set. Therefor€B(K) = (0, |K|).
Thus,

CB(J,) € {0} x n.
On the other hand, for akk € {0,...n — 1}, there existss" C n such that|F| = &, i.e,,
CB(F) = (0,k). Thus,

CB(#,) = {0} x n.
Hence,

|| = |CB(A)| =n. 1

Proposition 3.5. There exists a metric spac€’, dg) such thai.7Zx| = N,.

Proof. We consider the metric space, p,). Sincep, is the discrete metric on the sef we
see that a subset ofis compact if and only if it is a finite set. Then, for &l € K, KO =K
is a finite set. Hence, for alk € K, CB(K) = (0,|K|). Thus,CB(%,) C {0} x w. On
the other hand, since for all € w, there existsk’ C w such thafK| = £, it follows that
CB(#,) = {0} x w. Therefore,

|| = ICB(AL)| = No.
Proposition 3.6. There exists a metric spa¢é&’ dr) such thaf. 7| = X;.

Proof. We take the metric spad®, d), whered is the usual metric on the st By Theorem
3.4 in [1], we obtain that

‘%/]R’ =N 1

Finally, it is worth mentioning that the last two results do not depend on the cardinality of the
underlying metric spaces considered there, as it can be seen in the next two propositions.

Proposition 3.7. There exists a countable metric spac€e d;) such thaf 7| = ;.
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Proof. Proceeding in a similar way as in the proof of Theorem 2.1in [1] and considering the
density of the rational number§), in R, we can see that for all countable ordinal humber

a € wy, and for alla,b € Q such thatt < b, there exists a set’ € K such thatx' C (a, b
andK(® = {b}. By using this last statement, we can prove an analogous result to Corollary 2.1
in [1], more precisely, we have that for all countable ordinal numberw,, and for allp € w,

there is a sef € Kq such thai K(®)| = p. Then,

CB(Ag) = (w1 x (w~ {0})) U{(0,0)}.
Hence, -
Al = [CB(H)| = |wi X w| = |wr] =R 0
Proposition 3.8. There exists an uncountable metric Spa€e dy ) such thaf. 7z | = R,.

Proof. We take the uncountable metric spd&e py ), wherepy, is the discrete metric on the real
line. Proceeding in a similar fashion as in the proof of Proposjtion 3.5, we obtain

|<%R| =Ny 1
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