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1. I NTRODUCTION

The study of homeomorphisms between compact countable subsets of a topological space
and countable ordinal numbers was began by S. Mazurkiewicz and W. Sierpinski in [10]. More
precisely, they showed that for every compact countable subset of ann-dimensional Euclidean
space, there exists a homeomorphism between this subset and some countable ordinal number.
Moreover, a detailed proof of this last result when the Euclidean space, under consideration, is
the real line, was given by the authors in [1]. Some related propositions can also be found in [3,
4, 9, 7]. The main result of Section 2 is Theorem 2.5 below, which extends Lemma 3.6 in [1]
for an arbitrary metric space. It is worth mentioning that Theorem 2 in [2] considers compact,
dispersed topological spaces with some additional properties, while Theorem 2.5 below regards
the case of a metric space. Furthermore, it is stated in [8], without proof, that it is a known fact
which can be proved by induction thatY is a countable locally compact space if and only if
Y is homeomorphic to some countable ordinal number (with the order topology). In this way,
Lemmas 2.1, 2.3 and 2.4, proved in Section 2, are the comprehensive induction steps required
in the Transfinite Induction used in the proof of Theorem 2.5. Section 3 is devoted to study the
cardinality of the set of all the equivalence classesKM , up to homeomorphisms, of compact
countable subsets of a metric space(M, d). Propositions 3.1 and 3.2 are used in the proof of
Theorem 3.3, where it is shown that for all metric space(E, d), the cardinality ofKE is less than
or equal toℵ1. Propositions 3.4 to 3.6 shows that for all cardinal numberκ ≤ ℵ1, there exists a
metric space(Eκ, dκ) such that the cardinality of the setKEκ is equal toκ. Proposition 3.7 says
that there exists a countable metric space(F, dF ) such that|KF | = ℵ1. Finally, Proposition 3.8
asserts that there is an uncountable metric space(G, dG) such that|KG| = ℵ0.

We denote byOR, the class of all ordinal numbers. In addition,ω represents the set of all
natural numbers andω1 is the set of all countable ordinal numbers. Further, we consider any
ordinal number as being a topological space, endowed with its natural order topology. In order
to describe this last topology, for allα, β ∈ OR such thatα ≤ β, we write

(α, β) := {γ ∈ OR : α < γ < β},
[α, β) := {γ ∈ OR : α ≤ γ < β}.

Thus, for anyδ ∈ OR, the natural order topology forδ is given by the following topological
basis

{(β, γ) : β, γ ∈ OR, β < γ ≤ δ} ∪ {[0, β) : β ∈ OR, β ≤ δ}.

Next definition was first introduced by G. Cantor in [5].

Definition 1.1 (Cantor-Bendixson’s derivative). Let A be a subset of a topological space. For a
given ordinal numberα ∈ OR, we define, using Transfinite Recursion, theα-th derivativeof
A, writtenA(α), as follows:

• A(0) = A,
• A(β+1) = (A(β))′, for all ordinal numberβ,
• A(λ) =

⋂
γ<λ

A(γ), for all limit ordinal numberλ 6= 0,

whereB′ denotes the derived set ofB, i.e., the set of all limit points (or accumulation points)
of the subsetB.

Remark 1.1. Given any subset of aT1 topological space, its derived set is closed. As a con-
sequence of this last result, we have that ifF is a closed subset of aT1 topological space, then
(F (α))α∈OR is a decreasing family of closed subsets.
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Moreover,P(C) and|C| denote, respectively, the power set and the cardinality of the setC.
We also writeA ∼ B if there is a homeomorphism between the topological spacesA andB.
If (X, τ) is a topological space, thenKX represents the set of all compact countable subsets of
X, where a countable set is either a finite set or a countably infinite set, andKX := KX/ ∼
denotes the set of all the equivalence classes, up to homeomorphisms, of elements ofKX . If
(E, d) is a metric space,x ∈ E andr > 0, we denote byB(x, r) andB[x, r] the open and
closed balls, centered atx with radiusr > 0, respectively. Furthermore, for allY 6= ∅, ρY is
used to designate the discrete metric on the setY . We now give the following definition.

Definition 1.2 (Cantor-Bendixson’s characteristic). Let D be a subset of a topological space
such that there exists an ordinal numberβ ∈ OR with the property thatD(β) is finite. We say
that(α, p) ∈ OR × ω is theCantor-Bendixson characteristicof D if α is the smallest ordinal
number such thatD(α) is finite and|D(α)| = p. In this case, we writeCB(D) = (α, p).

For the sake of completeness, we give here the proof of the following theorem, which was
first introduced by G. Cantor in [6] for ann-dimensional Euclidean space. It deserves to point
out that there are some known extensions, considering topological spaces, of the next result.

Theorem 1.1.Let (X, τ) be a Hausdorff space. For allK ∈ KX , there existsα ∈ ω1 such that
K(α) is a finite set.

Proof. Let K ∈ KX . We suppose, for a contradiction, that for all countable ordinal numberγ,
K(γ) is an infinite set. Letα ∈ ω1. Sinceα + 1 ∈ ω1, we have thatK(α+1) is an infinite set, and
thus it is a nonempty set. By Remark 1.1,K(α+1) ⊆ K. Then,K(α+1) is a countable set. Using
the fact that every nonempty, compact, perfect, Hausdorff space is uncountable, we obtain that
K(α+2) 6= K(α+1). Thus, by using again Remark 1.1, we getK(α+2)  K(α+1). We now define

Kα := K(α+1) rK(α+2) 6= ∅.

Then,{Kγ : γ ∈ ω1} is a family of nonempty sets. By the Axiom of Choice, there exists a
function

f : ω1 →
⋃

γ∈ω1

Kγ

such that for allγ ∈ ω1, f(γ) ∈ Kγ. We claim thatf is injective. In fact, letβ, δ ∈ ω1 be such
thatβ < δ. Thus,β + 2 ≤ δ + 1. By Remark 1.1,

K(δ+1) ⊆ K(β+2).

Then,

Kβ ∩Kδ = (K(β+1) rK(β+2)) ∩ (K(δ+1) rK(δ+2)) = ∅.

Sincef(β) ∈ Kβ andf(δ) ∈ Kδ, it follows that f(β) 6= f(δ). Hence,f is a one-to-one
function. Therefore,

ℵ1 := |ω1| ≤

∣∣∣∣∣ ⋃
γ∈ω1

Kγ

∣∣∣∣∣ ≤ |K| ≤ ℵ0,

giving a contradiction. This finishes the proof of the theorem.

Remark 1.2. Last theorem implies that if(X, τ) is a Hausdorff space andK ∈ KX , then
CB(K) is well-defined and furthermoreCB(K) ∈ ω1 × ω.
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2. EXISTENCE OF HOMEOMORPHISMS

Lemma 2.1. If (E, d) is a metric space,K ∈ KE, andCB(K) = (1, 1), then

K ∼ ω + 1.

Proof. SinceCB(K) = (1, 1), there existsx ∈ E such thatK ′ = {x}. Moreover, we see that
K = K(0) is infinite. Then,K rK ′ is a countably infinite set. Thus, there is a bijectiong from
K rK ′ ontoω. We now define the following function

f : K −→ ω + 1

z 7−→ f(z) =

{
g(z), if z 6= x,

ω, if z = x.

From the definition off , we obtain directly thatf is a bijective function. We will now show
thatf is continuous. Since every point belonging toKrK ′ is an isolated point ofK, it follows
thatf is continuous at every point ofKrK ′. Thus, it remains to show the continuity off at the
pointx. We take an open basic neighborhoodV of f(x) = ω with regard to the order topology
of ω + 1. We will now show thatf−1(V ) is a neighborhood ofx. If V = [0, β), we have that
β = ω + 1. Thus,V = ω + 1 andf−1(V ) = K is a neighborhood ofx. On the other hand, if
V = (n, α), then

n < ω < α ≤ ω + 1.

Therefore,n ∈ ω andα = ω + 1. We now define the following set

A := {z ∈ K : f(z) ≤ n}.
Thus,x 6∈ A. Moreover, sincef is an injective function, we see thatA is a finite set. Let us take
r := min{d(z, x) : z ∈ A} > 0. Then,

K ∩B(x, r) ⊆ f−1((n, ω + 1)).

In fact, if z ∈ K satisfiesd(z, x) < r, thenz 6∈ A. Hence,f(z) > n. In addition, using the
definition of functionf , we see directly thatf(z) < ω + 1. Thus,f(z) ∈ (n, ω + 1) = V .
Consequently,f−1((n, ω + 1)) is a neighborhood ofx. Therefore,f is continuous at the point
x. We thus conclude thatf is continuous at every point of its domain. Then,f is a continuous
function. Finally, sincef is a continuous bijective function,K is compact andω + 1 is a
Hausdorff space, it follows thatf is a homeomorphism. In conclusion,K ∼ ω + 1.

The next lemma extends Lemma 3.4 in [1] to the case of an arbitraryT1 topological space.

Lemma 2.2. Let K and F be closed subsets of aT1 topological space such thatK ∩ F =
K ∩ int(F ), whereint(F ) is the set of all interior points ofF . Then, for allα ∈ OR, we have
that

(2.1) (K ∩ F )(α) = K(α) ∩ F.

Proof. We will use Transfinite Induction.

• The caseα = 0 follows directly.
• We assume that the result holds for a givenα ∈ OR, i.e., (K ∩ F )(α) = K(α) ∩ F .

Then,

(K ∩ F )(α+1) =
(
(K ∩ F )(α)

)′
= (K(α) ∩ F )′ ⊆ (K(α))′ ∩ F ′ ⊆ K(α+1) ∩ F,

where in the last expression we have used the fact thatF is closed. To show the other
inclusion, letx ∈ K(α+1) ∩ F . SinceK is a closed subset of aT1 topological space,
using Remark 1.1, it follows thatx ∈ K ∩ F = K ∩ int(F ). Therefore, there exists a
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neighborhoodU of x such thatU ⊆ F . Let V be a neighborhood ofx. We now take
W := U ∩ V . We see thatW is also a neighborhood ofx. Then,

∅ 6=
(
W r {x}

)
∩K(α)

=
(
W r {x}

)
∩K(α) ∩ F

=
(
W r {x}

)
∩ (K ∩ F )(α)

⊆
(
V r {x}

)
∩ (K ∩ F )(α).

Hence,x ∈ (K∩F )(α+1). Thus,K(α+1)∩F ⊆ (K∩F )(α+1). Therefore,(K∩F )(α+1) =
K(α+1) ∩ F .

• Lastly, letλ 6= 0 be a limit ordinal number. We assume that for allβ ∈ OR such that
β < λ, (K ∩ F )(β) = K(β) ∩ F . Hence,

(K ∩ F )(λ) =
⋂
β<λ

(K ∩ F )(β) =
⋂
β<λ

(K(β) ∩ F ) =
⋂
β<λ

K(β) ∩ F = K(λ) ∩ F.

This finishes the proof.

Lemma 2.3.Let(E, d) be a metric space and letα > 1 be a countable ordinal number. Suppose
that for all ordinal numberβ ∈ OR such that0 < β < α and for all K̃ ∈ KE with CB(K̃) =

(β, p) ∈ OR×ω, we have that̃K ∼ ωβ ·p+1. Then, for allK ∈ KE such thatCB(K) = (α, 1),
we get

K ∼ ωα + 1.

Proof. Let K ∈ KE be such thatCB(K) = (α, 1) with α > 1. Then, there existsx ∈ K with
K(α) = {x}. We see thatx ∈ K(α) ⊆ K ′′. Thus,x is an accumulation point ofK ′. Then, there
is a sequence(xn)n∈ω in K ′ r {x} such that(d(xn, x))n∈ω is a strictly decreasing sequence
converging to0. Moreover, since{d(z, x) ∈ R : z ∈ K} is a countable set, it follows that for
all n ∈ ω,

An := {d(z, x) ∈ R : z ∈ K}c ∩ (d(xn+1, x), d(xn, x))

is a nonempty set. Therefore,{An : n ∈ ω} is a nonempty family of nonempty sets. By the
Axiom of Countable Choice, there exists a sequence(rn)n∈ω of real numbers such that for all
n ∈ ω,

d(xn+1, x) < rn < d(xn, x)

and for allz ∈ K we have thatd(z, x) 6= rn. Thus, for alln ∈ ω, we define the following sets

F0 := B(x, r0)
c,

Fn+1 := B[x, rn]rB(x, rn+1)

and
Kn := K ∩ Fn.

We claim that for alln ∈ ω,
K ∩ Fn = K ∩ int(Fn).

In fact, letn ∈ ω. We see immediately thatK∩int(Fn) ⊆ K∩Fn. Reciprocally, letz ∈ K∩Fn.
We first consider the case whenn = 0. We obtain thatz ∈ K andd(z, x) ≥ r0. Sincez ∈ K,
we have thatd(z, x) 6= r0. Thus,ε0 := d(z, x) − r0 > 0. It is not difficult to see now that
B(z, ε0) ⊆ F0. Then,z ∈ int(F0). Hence,K ∩ F0 ⊆ K ∩ int(F0). We now consider the case
n ∈ ω r {0}. We have thatz ∈ K and

rn ≤ d(z, x) ≤ rn−1.
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Sincez ∈ K, we obtain thatd(z, x) 6= rn andd(z, x) 6= rn−1. We now takeεn := min{d(z, x)−
rn, rn−1 − d(z, x)} > 0. We getB(z, εn) ⊆ Fn. Hence,z ∈ int(Fn). Therefore,K ∩ Fn ⊆
K ∩ int(Fn).
We can now see that the family{Kn : n ∈ ω} has the following properties:

• SinceK is a closed subset ofE, we obtain that for alln ∈ ω, xn ∈ Kn.
• For alln ∈ ω, Kn ⊆ K.
• Since the intersection of two closed subsets is also closed, we see that for alln ∈ ω, Kn

is a closed subset.
• Since every closed subset of a compact space is compact, we have that for alln ∈ ω,

Kn is compact.
• Since for alln ∈ ω, Kn is a countable set, we obtain that for alln ∈ ω, Kn ∈ KE.
• For all n ∈ ω, K ′

n 6= ∅. In fact, letn ∈ ω. By Lemma 2.2, we have thatK ′
n =

(K ∩ Fn)′ = K ′ ∩ Fn. Moreover, sincexn ∈ K ′ ∩ Fn, we see thatxn ∈ K ′
n.

• Since{Fn : n ∈ ω} is a pairwise disjoint family of sets, we obtain that the family of
sets{Kn : n ∈ ω} is also pairwise disjoint.

• We have that
K =

⊎
n∈ω

Kn ] {x}.

In fact, since the sequence(rn)n∈ω converges to0, we see that
⊎

n∈ω Fn ] {x} = E.
Then, ⊎

n∈ω

Kn ] {x} =
⊎
n∈ω

(K ∩ Fn) ] {x}

=

(
K ∩

⊎
n∈ω

Fn

)
] {x}

= K ∩

(⊎
n∈ω

Fn ] {x}

)
= K ∩ E = K.

• For alln ∈ ω, K
(α)
n = ∅. In fact, by Lemma 2.2, we see that for alln ∈ ω,

K(α)
n = (K ∩ Fn)(α) = K(α) ∩ Fn = {x} ∩ Fn = ∅.

• Using the fact that an infinite subset of a compact subset of a topological space has at
least a limit point in the compact subset, using also Remark 1.1 and the Cantor intersec-
tion theorem in a Hausdorff topological space, we see that the last assertion implies that
for all n ∈ ω, if CB(Kn) = (βn, pn) ∈ OR× ω, then0 < βn < α andpn ∈ ω r {0}.

It follows from the hypothesis that for alln ∈ ω, Kn ∼ ωβn · pn + 1. By the Axiom of
Countable Choice, there is a sequence(fn)n∈ω of homeomorphisms such that for alln ∈ ω,
fn : Kn → ωβn · pn + 1 is a homeomorphism of the topological spaceKn ontoωβn · pn + 1. We
now define the following function

f : K −→ τ + 1

z 7−→ f(z) =


f0(z), if z ∈ K0,

n−1∑
k=0

ωβk · pk + 1 + fn(z), if z ∈ Kn, for somen ∈ ω r {0},

τ , if z = x,
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where

τ :=
∑
k∈ω

ωβk · pk := sup

{
n∑

k=0

ωβk · pk : n ∈ ω

}
.

Proceeding in a similar way to the proof of Lemma 3.3 in [1], it is possible to show thatτ = ωα

andf is a homeomorphism ofK ontoτ + 1. Hence,K ∼ ωα + 1.

Lemma 2.4. Let (E, d) be a metric space. Letα be a countable ordinal number such that
α > 0 and letp ∈ ω. We assume that for all̃K ∈ KE such thatCB(K̃) = (α, 1), we have that
K̃ ∼ ωα + 1. Then, for allK ∈ KE with CB(K) = (α, p), we get

K ∼ ωα · p + 1.

Proof. Let K ∈ KE be such thatCB(K) = (α, p) with α > 0. As mentioned in the proof of the
previous lemma, we can show thatp ∈ ω r {0}. Thus,

K(α) = {x0, x1, . . . , xp−1},
where for alli, j ∈ {0, . . . , p − 1} such thati 6= j, xi 6= xj. For all m ∈ {1, . . . , p − 1}, we
define

dm := min{d(xm, xj) ∈ R : 0 ≤ j ≤ p− 1 and j 6= m} > 0.

Let m ∈ {1, . . . , p− 1}. Since

{d(z, xm) ∈ R : z ∈ K}
is a countable set, there existsrm > 0 such that

rm ∈ {d(z, xm) ∈ R : z ∈ K}c ∩ (0, dm).

Thus, for allz ∈ K, we have thatd(z, xm) 6= rm. We now define

Fm := B[xm, rm]

and

F0 := E r
p−1⋃
j=1

B(xj, rj).

Moreover, for alln ∈ {0, . . . , p− 1}, we also define

Kn := K ∩ Fn.

We observe that for alln ∈ {0, . . . , p− 1},
K ∩ Fn = K ∩ int(Fn).

In fact, letn ∈ {0, . . . , p − 1}. Sinceint(Fn) ⊆ Fn, we see thatK ∩ int(Fn) ⊆ K ∩ Fn.
Reciprocally, givenz ∈ K ∩ Fn, we see thatz ∈ K and we consider the following two cases:

• We first examine the situation whenn ∈ {1, . . . , p − 1}. SinceFn := B[xn, rn], we
have that

d(z, xn) ≤ rn.

In addition,z ∈ K implies thatd(z, xn) 6= rn. By takingεn := rn − d(z, xn) > 0, we
obtain thatB(z, εn) ⊆ Fn. Hence,z ∈ int(Fn).

• We now assume thatn = 0. Using the fact thatz ∈ F0 := E r
p−1⋃
j=1

B(xj, rj), we

conclude that for allj ∈ {1, . . . , p− 1},
d(z, xj) ≥ rj.
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Furthermore, sincez ∈ K, we see that for allj ∈ {1, . . . , p − 1}, d(z, xj) 6= rj. We
now takeε0 := min{d(z, xj) − rj : 1 ≤ j ≤ p − 1} > 0. Then,B(z, ε0) ⊆ F0.
In order to prove this last assertion, letw ∈ B(z, ε0). We now suppose, to derive
a contradiction, that there existsi ∈ {1, . . . , p − 1} such thatd(w, xi) < ri. Then,
ε0 + ri ≤ d(z, xi) ≤ d(z, w) + d(w, xi) < ε0 + ri, which is a contradiction. Thus,
z ∈ int(F0).

Therefore,K ∩ Fn ⊆ K ∩ int(Fn).
Proceeding in a similar manner as in the proof of Lemma 2.3, we can show that the family
{Kn : 0 ≤ n ≤ p− 1} satisfies the next properties:

• Using Remark 1.1, we have that for alln ∈ {0, . . . , p− 1}, xn ∈ Kn.
• For alln ∈ {0, . . . , p− 1}, Kn ⊆ K.
• For alln ∈ {0, . . . , p− 1}, Kn is a closed subset ofE.
• Since every closed subset of a compact space is compact, we obtain that for alln ∈
{0, . . . , p− 1}, Kn is compact.

• For alln ∈ {0, . . . , p− 1}, Kn ∈ KE.
• {Kn : 0 ≤ n ≤ p− 1} is a pairwise disjoint family of sets.

• K =

p−1⊎
n=0

Kn.

• Using Lemma 2.2, we conclude that for alln ∈ {0, . . . , p− 1},

K(α)
n = (K ∩ Fn)(α) = K(α) ∩ Fn = {xn}.

• It follows from the last assertion that for alln ∈ {0, . . . , p− 1}, CB(Kn) = (α, 1).

By using the hypothesis, we see that for alln ∈ {0, . . . , p− 1}, there exists a homeomorphism
gn : Kn → ωα + 1 from the topological spaceKn ontoωα + 1. We now consider the following
function

g : K −→ τ + 1

z 7−→ g(z) =

{
g0(z), if z ∈ K0,

ωα · n + 1 + gn(z), if z ∈ Kn, for somen ∈ {1, . . . , p− 1},

whereτ := ωα · p. By a similar argument to the one used in the proof of Lemma 2.3 above, we
obtain that functiong is a homeomorphism fromK ontoτ + 1. Hence,K ∼ ωα · p + 1.

Theorem 2.5.Suppose that(E, d) is a metric space. Letα be a countable ordinal number such
thatα > 0 and letp ∈ ω. If K ∈ KE satisfiesCB(K) = (α, p), then

K ∼ ωα · p + 1.

Proof. We proceed by Strong Transfinite Induction on the ordinal numberα > 0. By Lem-
mas 2.1 and 2.4, the result holds forα = 1. Now, letα ∈ ω1 be such thatα > 1. We suppose
that the conclusion is true for all ordinal numberβ such that0 < β < α. By Lemmas 2.3
and 2.4, the result is also valid forα. Thus, the theorem holds for all countable ordinal number
greater than zero.

Remark 2.1. The hypothesis about the countable cardinality of the ordinal numberα in Lemma 2.3,
Lemma 2.4 and Theorem 2.5 can be omitted. In fact, if(E, d) is a metric space,K ∈ KE,
(α, p) ∈ OR× (ω r {0}) andK ∼ ωα · p + 1, thenα ∈ ω1.
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3. CARDINALITY OF THE PARTITION

Let (X, τ) be a topological space. We consider the setKX of all compact countable subsets of
X. The setKX := KX/∼ provides a partition of the setKX into disjoint equivalence classes,
more precisely,

KX = {[K] ∈ P(KX) : K ∈ KX},
where, for allK ∈ KX

[K] := {K1 ∈ KX : K1 ∼ K}.
The following two propositions will be used in the proof of Theorem 3.3 below.

Proposition 3.1. Let (X, τ) be aT1 topological space. For allK1, K2 ∈ KX such thatK1 ∼
K2, we have thatCB(K1) = CB(K2).

Proof. Let K1, K2 ∈ KX be such thatK1 ∼ K2 and letf : K1 → K2 be a homeomorphism
from K1 ontoK2. We will first show that for all ordinal numberα ∈ OR, K

(α)
1 ∼ K

(α)
2 , where

f |
K

(α)
1

is a homeomorphism between these two sets. In order to prove this last assertion, we use
below Transfinite Induction.

• In the case whenα = 0, we see thatK(0)
1 = K1 ∼ K2 = K

(0)
2 andf = f |

K
(0)
1

: K
(0)
1 →

K
(0)
2 is a homeomorphism fromK(0)

1 ontoK
(0)
2 .

• We now suppose that the result holds for a given ordinal numberα, i.e.,K(α)
1 ∼ K

(α)
2

andf |
K

(α)
1

is a homeomorphism betweenK(α)
1 andK

(α)
2 . By Remark 1.1 above, we

have thatK(α+1)
1 ⊆ K

(α)
1 . Thus,

f(K
(α+1)
1 ) = f |

K
(α)
1

(K
(α+1)
1 ) = f |

K
(α)
1

((K
(α)
1 )′) = (K

(α)
2 )′ = K

(α+1)
2 .

Then, f |
K

(α+1)
1

: K
(α+1)
1 → K

(α+1)
2 is a homeomorphism fromK(α+1)

1 onto K
(α+1)
2 .

Therefore,K(α+1)
1 ∼ K

(α+1)
2 .

• Finally, letλ 6= 0 be a limit ordinal number. We presume that for allβ ∈ OR such that
β < λ, K

(β)
1 ∼ K

(β)
2 , wheref |

K
(β)
1

is a homeomorphism fromK(β)
1 ontoK

(β)
2 . Sincef

is an injection, we have that

f(K
(λ)
1 ) = f

(⋂
β<λ

K
(β)
1

)
=
⋂
β<λ

f(K
(β)
1 ) =

⋂
β<λ

K
(β)
2 = K

(λ)
2 .

Therefore,f |
K

(λ)
1

is a homeomorphism betweenK(λ)
1 andK

(λ)
2 , i.e.,K(λ)

1 ∼ K
(λ)
2 .

Then, for allα ∈ OR, |K(α)
1 | = |K(α)

2 |. We suppose thatCB(K1) = (β, p) ∈ OR × ω. Thus,
β is the smallest ordinal number such thatK

(β)
1 is finite. Furthermore, since|K(β)

1 | = p, we
obtain that|K(β)

2 | = |K(β)
1 | = p. With this, we conclude thatCB(K2) = (β, p) = CB(K1).

Proposition 3.2. Let (E, d) be a metric space and letK1, K2 ∈ KE. If CB(K1) = CB(K2),
thenK1 ∼ K2.

Proof. Let CB(K1) = CB(K2) = (α, p), for some ordinal numberα and somep ∈ ω.

• If α = 0, we have thatK1 andK2 are both finite sets withp elements, thereforeK1 ∼
K2.

• If α > 0 andp ∈ ω, by Theorem 2.5, we have thatK1 ∼ ωα ·p+1 andK2 ∼ ωα ·p+1,
thusK1 ∼ K2.
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Propositions 3.1 and 3.2 imply that for any metric space(E, d), the partition ofKE is fully
characterized by the Cantor-Bendixson characteristic.

Theorem 3.3.Let (E, d) be a metric space. The cardinality ofKE is less than or equal toℵ1.

Proof. We define the function

C̃B : KE −→ ω1 × ω

[K] 7−→ C̃B([K]) = CB(K).

By Theorem 1.1 and Proposition 3.1, we see that functionC̃B is well-defined. Moreover, Propo-
sition 3.2 shows that̃CB is an injective function. Thus,

|KE| ≤ |ω1 × ω| = |ω1| =: ℵ1.

In general, we cannot strengthen the last result. To show this, we give the following three
propositions.

Proposition 3.4. For all n ∈ ω, there exists a metric space(En, dn) such that|KEn| = n.

Proof. Let n ∈ ω r {0}. We now consider the space(n, ρn), whereρn is the discrete metric on
the setn := {0, . . . , n − 1}. Sincen is a finite set, we have that every subset ofn is compact,
i.e.,

Kn = P(n).

Moreover, for allK ∈ Kn, we see thatK(0) = K is a finite set. Therefore,CB(K) = (0, |K|).
Thus,

C̃B(Kn) ⊆ {0} × n.

On the other hand, for allk ∈ {0, . . . n − 1}, there existsF ⊆ n such that|F | = k, i.e.,
CB(F ) = (0, k). Thus,

C̃B(Kn) = {0} × n.

Hence,
|Kn| = |C̃B(Kn)| = n.

Proposition 3.5. There exists a metric space(E, dE) such that|KE| = ℵ0.

Proof. We consider the metric space(ω, ρω). Sinceρω is the discrete metric on the setω, we
see that a subset ofω is compact if and only if it is a finite set. Then, for allK ∈ Kω, K(0) = K

is a finite set. Hence, for allK ∈ Kω, CB(K) = (0, |K|). Thus,C̃B(Kω) ⊆ {0} × ω. On
the other hand, since for allk ∈ ω, there existsK ⊆ ω such that|K| = k, it follows that
C̃B(Kω) = {0} × ω. Therefore,

|Kω| = |C̃B(Kω)| = ℵ0.

Proposition 3.6. There exists a metric space(F, dF ) such that|KF | = ℵ1.

Proof. We take the metric space(R, d), whered is the usual metric on the setR. By Theorem
3.4 in [1], we obtain that

|KR| = ℵ1.

Finally, it is worth mentioning that the last two results do not depend on the cardinality of the
underlying metric spaces considered there, as it can be seen in the next two propositions.

Proposition 3.7. There exists a countable metric space(G, dG) such that|KG| = ℵ1.
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Proof. Proceeding in a similar way as in the proof of Theorem 2.1 in [1] and considering the
density of the rational numbers,Q, in R, we can see that for all countable ordinal number
α ∈ ω1, and for alla, b ∈ Q such thata < b, there exists a setK ∈ KQ such thatK ⊆ (a, b]
andK(α) = {b}. By using this last statement, we can prove an analogous result to Corollary 2.1
in [1], more precisely, we have that for all countable ordinal numberα ∈ ω1, and for allp ∈ ω,
there is a setK ∈ KQ such that|K(α)| = p. Then,

C̃B(KQ) =
(
ω1 × (ω r {0})

)
∪ {(0, 0)}.

Hence,
|KQ| = |C̃B(KQ)| = |ω1 × ω| = |ω1| =: ℵ1.

Proposition 3.8. There exists an uncountable metric space(H, dH) such that|KH | = ℵ0.

Proof. We take the uncountable metric space(R, ρR), whereρR is the discrete metric on the real
line. Proceeding in a similar fashion as in the proof of Proposition 3.5, we obtain

|KR| = ℵ0.
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