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1. INTRODUCTION

Let A andB be a unital complex Banach Algebras. We always denote iy unit both.A
andB. Define the set of normalized states

S(A) ={feA:f)=fl =1},
where A’ denotes the dual space df It is well known thatS(.A) is a compact and convex in
the weak*-topology of4’. For any element € A, the algebraic numerical rangé (a) and
numerical radiug ,(a) of a are defined by
Va(a) = {f(a) : f € S(A)} andu,(a) = sup |2].
2€Va(a)
The numerical radius 4(.) is a norm onA. In the case of’*-algebras, this norm is equivalent
to the given norm:

1
> llall < va(@) < Jall

foralla € A. Alinear mapl’ : A — B is said to be numerical range preservingi{7'(a)) =
V(a), numerical radius preserving or numerical radius isometey{f'(a)) = v 4(a) for all
a € A. We say thatl” compresses the numerical rang&i{7'(a)) C V,(a) for all a € A.

Theorem 1.1.Let. 4 and B be Banach algebras. A unital linear mdp: A — B compresses
numerical range if and only i65(7(a)) < v4(a) forall a € A.

Theorem 1.2. Let A and B be unital Banach algebras. Suppose tiiat A — B is a linear
numerical radius preserving map. Then we have that

(1) T is injective;

(2) if T surjective, ther~! is the numerical radius preserving.

Theorem 1.3.Let.4 andB be Banach algebras and Iét: . A — B be a unital surjective linear
map. Then the following are equivalent:

(1) Vu(T(a)) = Vu(a) forall a € A.

(2) v5(T'(a)) = vu(a) forall a € A.

Proof. (1) = (2) is trivial. For the converse, supposg(T'(a)) = v,(a) for alla € A. By[1.1,
Vs(T'(a)) C Vi(a). SinceT is invertible, this implies, by 1]2, th&t~! is the numerical radius
preserving. That s,

UA(T7H(b)) = va(b).
for all b € B. Thus,V,(T~1(b)) C Vx(b) for all b € B by[1.1. HenceV, (T (T(a)) C
Vs(T(a)) foralla € A,i.e.,V,(a) C Vs(T(a)). It follows thatVys(T'(a)) = Va(a). n

A linear mapT : A — B betweenC*-algebras is said to be-homomorphism if, for all
a,b € A, T(ab) = T(a)T(b) andT'(a*) = T'(a)*, Jordan-isomorphism (0IC*-isomorphism)
if it is a linear bijective map and satisfi#ga*) = T'(a)* andT'(a?) = T'(a)* for all a € A.

2. MAIN RESULT 1

A Banachx-algebra is said to be Hermitian if the spectrum of any self-adjpiat o* ele-
ment in A is a subset oR. The class of Hermitian Banach algebras incorporates a wide class
of Banach«-algebras and includeS*-algebras as a very special case. One more interesting
example is the group algebia (G), whenG is commutative. Letd be a Hermitian Banach
algebra. We denote the set of positive elementslby Hence,

A" ::{Zaka,’; : akGA,nGN}.

k=1
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For a Banachk-algebra, the following inclusion holds:
A;:={h* : h=h*e€ A} C A",

In general, the above inclusion is strict, butdfis Hermitian, thend, = A*.
A linear functionp is said to bepositiveif p(aa*) > 0 for all « € A (denoted by > 0). Let
us define the set

S.(A):={pe A :p>0,p1) =1}

It is obvious that allp € S.(.A) are Hermitian, that isp(a*) = p(a) for all « € A. We now
introduce the definition of the-numerical rangeand thex-numerical radius

Vi(a) :={p(a) : pe S.(A)} and v’ (a):= sup |z|.

2€V3(a)

In the sequelA and3 are two Hermitian semi-simple Banach algebras. Then, by [3, Corol-
lary 33.13, p. 149], there exists an auxiliary ngrion .4 which satisfies th€*-condition (i.e.,
|zz*| = |z|? for all z € A and|z| < ||z|| for anyx € A). We shall denote byl the completion

of A with respect to the norm|. Observe that is a unitalC*-algebra.
We begin with the following theorem, which shows the relationship betWwé&eandl; and
that every algebra-homomorphism compresses the numerical radius

Theorem 2.1.Let.4 and B be two Hermitian semi-simple Banagkalgebras. Then:
(1) Forall a € A, we have

Vi(a) = Vai(a) and Vi(a) C V,(a).
(2) If ¢ : A — Bis ax-homomorphism, then
s(¢(a)) < vi(a).

Proof. Since for unitalC*-algebras a linear functionalis positive if and only ifjp| = p(1),
by the Hahn-Banach Theorem, one can easily see thavifial = V' (a). Consider now an
element: € V;(a). Then there exists € S.(A) such that = p(a). Since

()

p(a)] < laf < flal

andp(1)=1, we infer thatl|p|| = p(1) = 1. Thenp € S(A) andz = p(a) € V,(a), as required.

For (2), let us consider any-homomorphismp and A € V}(¢(a)). Then there exists a
positive linear formp € S, (B) such that\ = p(¢(a)). Define a linear functiongl, on A by
pi(a) = po ¢(a). Obviously,p, is positive, and, hence, by![3, Theorem 27.2, p. 102] there
exists ax-representatiom; of .4 acting on a Hilbert spacg/; and a cyclic vectot € H; of
norm1 so thatp, (a) = (m1(a)¢, §) for all a € A. Therefore,

[p1(a)] < [[ma(a)l] < lal

foralla € A. Hencep, € S.(A) and\ = py(a) € V(a). This proves that} (¢(a)) C V}(a)
for all a € A. Accordingly,v(#(a)) < v*(a). The proof is thus completa.

If Ais aC*-algebra, by the uniqueness of th&-norm, we getd = A. Hence, according to
, we infer that/,(a) = V*(a) forall a € A. If A C A (notice thatd = A if and only if
Ais aC*-algebra), then this equality valid for unitaf-algebras, need not hold. That is, there
can exist continuous linear functionaln A such that|p|| = p(1) = 1, but which fail to be
positive. This is shown in the following example.

AJMAA Vol. 16, No. 1, Art. 2, pp. 1-5, 2019 AJMAA


http://ajmaa.org

4 MOHAMED MABROUK AND ASHWAQ ALBIDEEW!I

Example 2.1. For example, consided = ¢!(Z), the set of all complex valued functiofion

7 such that
£l =" | £(n)]

nez
is finite. For f andg in ¢*(Z) define the convolution product
Frgn)=>_ f(G)gn—j),vn € L.
JEZ

Note thatA is a commutative Banach algebra with the (multiplicative) unit is the fundtion

A defined by
1, fn=0
1n) = { 0. ifneZ\{0}.

Moreover, we know thatl is a Banach algebra with an involution
=175 () = f(=n)

foranyn € Z.
Now, consider the linear functional: A — C defined by

p(f) = £(0) + f(1)i
forall f € A. Easy computation show that
Ipll =p(1) = 1.
However, if we take the element A defined by

1, ifned{0,1
o) ={ 5 ne by,

* 1, ifnef{0,—-1
a’(n) := { 0 itnc %\{0,51}.

Thena € A butp(axa*) = 2+ ¢, which is not a real number.

Now, in the case of *-algebras, the author in/[2] showed that any linear unital and surjective
numerical radius isometry is a Jordansomorphism. Our goal in the sequel is to generalize
this result to the case of Hermitian algebras.

Theorem 2.2. Let A and B be Hermitian semi-simple Banach algebras d@nthe a surjective
linear mapping such thaf (1) = 1 and v} (7'(a)) = v%(a) for all « € A. ThenT is a Jordan
x-iIsomorphism.

Proof. Let us first prove thdf is a vector space isomorphism. et A be such thal'(a) = 0.
Sincev;(T'(a)) = vi(a) = 0 andvy is a norm, we infer that = 0 and7 is injective. [2.1
allows us to conclude that

1 *
Jlal < < lal.
Keeping in mind that; (T'(a)) = v*(a), we infer that

1
slal < |T(a)| < 2|al
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for all « € A. Consequently]’ andT~! are continuous with respect t¢, and to theC*-norm
| - |. The extensiorl” of T'is also a vector space isomorphism between thedvalgebrasA
andB. We will show that i

vs(T(a)) = vala)
for all « € A. Take anya € A. There exists a sequeneg € A so thatlima, = a. By

continuity of 7', we infer thatlim 7'(a,,) = T'(a). Accordingly,
lim vy (T(an)) = vg (T(a))
OrT(a,) = T(a,) andvg(T(a,)) = vala,). Hence,
Vg (T(a)) = limv (a,) = v4i(a).

So, we have shown;(T(a)) = v4(a) for all a € A. Therefore, the results ofi[2] may be
applied to show thaf is a Jordan-isomorphism. Sof" is a Jordan-isomorphism, since it is

the restriction ta4 of the Jordan-isomorphisnil’. g
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