

The Australian Journal of Mathematical Analysis and Applications

AJMAA

Volume 16, Issue 1, Article 2, pp. 1-5, 2019

NUMERICAL RADIUS ISOMETRIES BETWEEN HERMITIAN BANACH ALGEBRAS

MOHAMED MABROUK AND ASHWAQ ALBIDEEWI

Received 24 April, 2018; accepted 23 October, 2018; published 8 January, 2019.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCES CITÉ ERRIADH, UNIVERSITY OF GABÈS, 6072 ZRIG, GABÈS, TUNISIA. mohamed.mabrouk@fsg.rnu.tn

DEPARTMENT OF MATHEMATICS, COLLEGE OF APPLIED SCIENCES, UMM AL-QURA UNIVERSITY, P. O. BOX 715, MAKKAH 21955, SAUDI ARABIA. Ashwaq.F.B@hotmail.com

ABSTRACT. In the case of C^* -algebras, the author in [2] showed that any linear unital and surjective numerical radius isometry is a Jordan *-isomorphism. In this paper, we generalize this result to the case of Hermitian Banach algebras.

Key words and phrases: Numerical Radius, Hermitian Banach Algebras, Jordan *-isomorphism, Preserving the numerical radius, Numerical radius isometry.

2010 Mathematics Subject Classification. Primary 15A86, 47A12; Secondary 47B49.

ISSN (electronic): 1449-5910

^{© 2019} Austral Internet Publishing. All rights reserved.

1. INTRODUCTION

Let \mathcal{A} and \mathcal{B} be a unital complex Banach Algebras. We always denote by **1** the unit both \mathcal{A} and \mathcal{B} . Define the set of normalized states

$$\mathcal{S}(\mathcal{A}) = \{ f \in \mathcal{A}' : f(\mathbf{1}) = \|f\| = 1 \},\$$

where \mathcal{A}' denotes the dual space of \mathcal{A} . It is well known that $\mathcal{S}(\mathcal{A})$ is a compact and convex in the weak*-topology of \mathcal{A}' . For any element $a \in \mathcal{A}$, the algebraic numerical range $V_{\mathcal{A}}(a)$ and numerical radius $v_{\mathcal{A}}(a)$ of a are defined by

$$V_{\mathcal{A}}(a) = \{f(a) : f \in \mathcal{S}(\mathcal{A})\} \text{ and } v_{\mathcal{A}}(a) = \sup_{z \in V_{\mathcal{A}}(a)} |z|.$$

The numerical radius $v_{\mathcal{A}}(.)$ is a norm on \mathcal{A} . In the case of C^* -algebras, this norm is equivalent to the given norm:

$$\frac{1}{2} \|a\| \le v_{\mathcal{A}}(a) \le \|a\|,$$

for all $a \in \mathcal{A}$. A linear map $T : \mathcal{A} \to \mathcal{B}$ is said to be numerical range preserving if $V_{\mathcal{B}}(T(a)) =$ $V_{\mathcal{A}}(a)$, numerical radius preserving or numerical radius isometry if $v_{\mathcal{B}}(T(a)) = v_{\mathcal{A}}(a)$ for all $a \in \mathcal{A}$. We say that T compresses the numerical range if $V_{\mathcal{B}}(T(a)) \subset V_{\mathcal{A}}(a)$ for all $a \in \mathcal{A}$.

Theorem 1.1. Let \mathcal{A} and \mathcal{B} be Banach algebras. A unital linear map $T : \mathcal{A} \to \mathcal{B}$ compresses numerical range if and only if $v_{\beta}(T(a)) \leq v_{A}(a)$ for all $a \in \mathcal{A}$.

Theorem 1.2. Let \mathcal{A} and \mathcal{B} be unital Banach algebras. Suppose that $T : \mathcal{A} \to \mathcal{B}$ is a linear numerical radius preserving map. Then we have that

- (1) *T* is injective;
- (2) if T surjective, then T^{-1} is the numerical radius preserving.

Theorem 1.3. Let \mathcal{A} and \mathcal{B} be Banach algebras and let $T : \mathcal{A} \to \mathcal{B}$ be a unital surjective linear map. Then the following are equivalent:

- (1) $V_{\mathcal{B}}(T(a)) = V_{\mathcal{A}}(a)$ for all $a \in \mathcal{A}$. (2) $\upsilon_{\mathcal{B}}(T(a)) = \upsilon_{\mathcal{A}}(a)$ for all $a \in \mathcal{A}$.

Proof. (1) \Rightarrow (2) is trivial. For the converse, suppose $v_{\mathcal{B}}(T(a)) = v_{\mathcal{A}}(a)$ for all $a \in \mathcal{A}$. By 1.1, $V_{\mathcal{B}}(T(a)) \subset V_{\mathcal{A}}(a)$. Since T is invertible, this implies, by 1.2, that T^{-1} is the numerical radius preserving. That is,

$$\upsilon_{\mathcal{A}}(T^{-1}(b)) = \upsilon_{\mathcal{B}}(b).$$

for all $b \in \mathcal{B}$. Thus, $V_{\mathcal{A}}(T^{-1}(b)) \subset V_{\mathcal{B}}(b)$ for all $b \in \mathcal{B}$ by 1.1. Hence, $V_{\mathcal{A}}(T^{-1}(T(a)) \subset V_{\mathcal{B}}(T(a))$ for all $a \in \mathcal{A}$, i.e., $V_{\mathcal{A}}(a) \subset V_{\mathcal{B}}(T(a))$. It follows that $V_{\mathcal{B}}(T(a)) = V_{\mathcal{A}}(a)$.

A linear map $T : \mathcal{A} \to \mathcal{B}$ between C^* -algebras is said to be *-homomorphism if, for all $a, b \in \mathcal{A}, T(ab) = T(a)T(b)$ and $T(a^*) = T(a)^*$, Jordan *-isomorphism (or C*-isomorphism) if it is a linear bijective map and satisfies $T(a^*) = T(a)^*$ and $T(a^2) = T(a)^2$ for all $a \in \mathcal{A}$.

2. MAIN RESULT 1

A Banach *-algebra is said to be Hermitian if the spectrum of any self-adjoint $a = a^*$ element in \mathcal{A} is a subset of \mathbb{R} . The class of Hermitian Banach algebras incorporates a wide class of Banach *-algebras and includes C^* -algebras as a very special case. One more interesting example is the group algebra $L^1(G)$, when G is commutative. Let A be a Hermitian Banach algebra. We denote the set of positive elements by \mathcal{A}^+ . Hence,

$$\mathcal{A}^+ := \bigg\{ \sum_{k=1}^n a_k a_k^* : a_k \in \mathcal{A}, n \in \mathbb{N} \bigg\}.$$

For a Banach *-algebra, the following inclusion holds:

$$\mathcal{A}_s := \left\{ h^2 : h = h^* \in \mathcal{A} \right\} \subset \mathcal{A}^+.$$

In general, the above inclusion is strict, but if A is Hermitian, then $A_s = A^+$.

A linear function p is said to be *positive* if $p(aa^*) \ge 0$ for all $a \in A$ (denoted by $p \ge 0$). Let us define the set

$$\mathcal{S}_*(\mathcal{A}) := \{ p \in \mathcal{A}' : p \ge 0, \, p(\mathbf{1}) = 1 \}.$$

It is obvious that all $p \in S_*(A)$ are Hermitian, that is, $p(a^*) = p(a)$ for all $a \in A$. We now introduce the definition of the *-numerical range and the *-numerical radius:

$$V_{\mathcal{A}}^{*}(a) := \{ p(a) \ : \ p \in \mathcal{S}_{*}(\mathcal{A}) \} \ \text{and} \ v_{\mathcal{A}}^{*}(a) := \sup_{z \in V_{\mathcal{A}}^{*}(a)} |z|.$$

In the sequel, \mathcal{A} and \mathcal{B} are two Hermitian semi-simple Banach algebras. Then, by [3, Corollary 33.13, p. 149], there exists an auxiliary norm |.| on \mathcal{A} which satisfies the C^* -condition (i.e., $|xx^*| = |x|^2$ for all $x \in \mathcal{A}$ and $|x| \leq ||x||$ for any $x \in \mathcal{A}$). We shall denote by $\hat{\mathcal{A}}$ the completion of \mathcal{A} with respect to the norm |.|. Observe that $\hat{\mathcal{A}}$ is a unital C^* -algebra.

We begin with the following theorem, which shows the relationship between $V_{\mathcal{A}}^*$ and $V_{\hat{\mathcal{A}}}$ and that every algebra *-homomorphism compresses the numerical radius $v_{\mathcal{A}}^*$.

Theorem 2.1. Let \mathcal{A} and \mathcal{B} be two Hermitian semi-simple Banach *-algebras. Then:

(1) For all $a \in A$, we have

$$V^*_{\mathcal{A}}(a) = V_{\hat{\mathcal{A}}}(a)$$
 and $V^*_{\mathcal{A}}(a) \subset V_{\mathcal{A}}(a)$

(2) If $\phi : \mathcal{A} \to \mathcal{B}$ is a *-homomorphism, then

$$v^*_{\mathcal{B}}(\phi(a)) \le v^*_{\mathcal{A}}(a).$$

Proof. Since for unital C^* -algebras a linear functional p is positive if and only if $|p| = p(\mathbf{1})$, by the Hahn-Banach Theorem, one can easily see that that $V_{\mathcal{A}}(a) = V_{\mathcal{A}}^*(a)$. Consider now an element $z \in V_{\mathcal{A}}^*(a)$. Then there exists $p \in \mathcal{S}_*(\mathcal{A})$ such that z = p(a). Since

$$|p(a)| \le |a| \le ||a||$$

and $p(\mathbf{1}) = 1$, we infer that $||p|| = p(\mathbf{1}) = 1$. Then $p \in \mathcal{S}(\mathcal{A})$ and $z = p(a) \in V_{\mathcal{A}}(a)$, as required.

For (2), let us consider any *-homomorphism ϕ and $\lambda \in V_{\mathcal{B}}^*(\phi(a))$. Then there exists a positive linear form $p \in \mathcal{S}_*(\mathcal{B})$ such that $\lambda = p(\phi(a))$. Define a linear functional p_1 on \mathcal{A} by $p_1(a) = p \circ \phi(a)$. Obviously, p_1 is positive, and, hence, by [3, Theorem 27.2, p. 102] there exists a *-representation π_1 of \mathcal{A} acting on a Hilbert space \mathcal{H}_1 and a cyclic vector $\xi \in \mathcal{H}_1$ of norm 1 so that $p_1(a) = \langle \pi_1(a)\xi, \xi \rangle$ for all $a \in \mathcal{A}$. Therefore,

$$|p_1(a)| \le ||\pi_1(a)|| \le |a|$$

for all $a \in \mathcal{A}$. Hence, $p_1 \in \mathcal{S}_*(\mathcal{A})$ and $\lambda = p_1(a) \in V^*_{\mathcal{A}}(a)$. This proves that $V^*_{\mathcal{B}}(\phi(a)) \subset V^*_{\mathcal{A}}(a)$ for all $a \in \mathcal{A}$. Accordingly, $v^*_{\mathcal{B}}(\phi(a)) \leq v^*_{\mathcal{A}}(a)$. The proof is thus complete.

If \mathcal{A} is a C^* -algebra, by the uniqueness of the C^* -norm, we get $\mathcal{A} = \hat{\mathcal{A}}$. Hence, according to 2.1, we infer that $V_{\mathcal{A}}(a) = V_{\mathcal{A}}^*(a)$ for all $a \in \mathcal{A}$. If $\mathcal{A} \subsetneq \hat{\mathcal{A}}$ (notice that $\hat{\mathcal{A}} = \mathcal{A}$ if and only if \mathcal{A} is a C^* -algebra), then this equality valid for unital C^* -algebras, need not hold. That is, there can exist continuous linear functionals p on \mathcal{A} such that $||p|| = p(\mathbf{1}) = 1$, but which fail to be positive. This is shown in the following example.

Example 2.1. For example, consider $\mathcal{A} = \ell^1(\mathbb{Z})$, the set of all complex valued functions f on \mathbb{Z} such that

$$||f||_1 = \sum_{n \in \mathbb{Z}} |f(n)|$$

is finite. For f *and* g *in* $\ell^1(\mathbb{Z})$ *define the convolution product*

$$f \star g(n) = \sum_{j \in \mathbb{Z}} f(j)g(n-j), \forall n \in \mathbb{Z}.$$

Note that A is a commutative Banach algebra with the (multiplicative) unit is the function **1** in A defined by

$$\mathbf{1}(n) := \begin{cases} 1, & \text{if } n = 0\\ 0, & \text{if } n \in \mathbb{Z} \setminus \{0\}. \end{cases}$$

Moreover, we know that A is a Banach algebra with an involution

$$f \mapsto f^*; f^*(n) = \overline{f(-n)}$$

for any $n \in \mathbb{Z}$.

Now, consider the linear functional $p : \mathcal{A} \longrightarrow \mathbb{C}$ *defined by*

$$p(f) = f(0) + f(1)i$$

for all $f \in A$. Easy computation show that

$$||p|| = p(\mathbf{1}) = 1.$$

However, if we take the element $a \in \mathcal{A}$ *defined by*

$$a(n) := \begin{cases} 1, & \text{if } n \in \{0, 1\} \\ 0, & \text{if } n \in \mathbb{Z} \setminus \{0, 1\}, \end{cases}$$

then a^* is the function defined by

$$a^*(n) := \begin{cases} 1, & \text{if } n \in \{0, -1\} \\ 0, & \text{if } n \in \mathbb{Z} \setminus \{0, -1\}. \end{cases}$$

Then $a \in A$ but $p(a \star a^*) = 2 + i$, which is not a real number.

Now, in the case of C^* -algebras, the author in [2] showed that any linear unital and surjective numerical radius isometry is a Jordan *-isomorphism. Our goal in the sequel is to generalize this result to the case of Hermitian algebras.

Theorem 2.2. Let \mathcal{A} and \mathcal{B} be Hermitian semi-simple Banach algebras and T be a surjective linear mapping such that $T(\mathbf{1}) = \mathbf{1}$ and $v_{\mathcal{B}}^*(T(a)) = v_{\mathcal{A}}^*(a)$ for all $a \in \mathcal{A}$. Then T is a Jordan *-isomorphism.

Proof. Let us first prove that T is a vector space isomorphism. Let $a \in \mathcal{A}$ be such that T(a) = 0. Since $v_{\mathcal{B}}^*(T(a)) = v_{\mathcal{A}}^*(a) = 0$ and $v_{\mathcal{B}}^*$ is a norm, we infer that a = 0 and T is injective. 2.1 allows us to conclude that

$$\frac{1}{2}|a| \le v_{\mathcal{A}}^* \le |a|.$$

Keeping in mind that $v^*_{\mathcal{B}}(T(a)) = v^*_{\mathcal{A}}(a)$, we infer that

$$\frac{1}{2}|a| \le |T(a)| \le 2|a|$$

for all $a \in \mathcal{A}$. Consequently, T and T^{-1} are continuous with respect to v_{β}^* and to the C^* -norm $|\cdot|$. The extension \tilde{T} of T is also a vector space isomorphism between the two C^* -algebras $\hat{\mathcal{A}}$ and $\hat{\mathcal{B}}$. We will show that

$$v_{\hat{\mathcal{B}}}(T(a)) = v_{\hat{\mathcal{A}}}(a)$$

for all $a \in \hat{\mathcal{A}}$. Take any $a \in \hat{\mathcal{A}}$. There exists a sequence $a_n \in \mathcal{A}$ so that $\lim a_n = a$. By continuity of \tilde{T} , we infer that $\lim \tilde{T}(a_n) = \tilde{T}(a)$. Accordingly,

$$\lim v_{\hat{\mathcal{B}}}(\hat{T}(a_n)) = v_{\hat{\mathcal{B}}}(\hat{T}(a)).$$

Or $\tilde{T}(a_n) = T(a_n)$ and $v_{\hat{B}}(T(a_n)) = v_{\hat{A}}(a_n)$. Hence,

$$v_{\hat{\mathcal{B}}}(T(a)) = \lim v_{\hat{\mathcal{A}}}(a_n) = v_{\hat{\mathcal{A}}}(a).$$

So, we have shown $v_{\hat{B}}(\tilde{T}(a)) = v_{\hat{A}}(a)$ for all $a \in \hat{A}$. Therefore, the results of [2] may be applied to show that \tilde{T} is a Jordan *-isomorphism. So, T is a Jordan *-isomorphism, since it is the restriction to \mathcal{A} of the Jordan *-isomorphism \tilde{T} .

REFERENCES

- [1] F. F BONSALL and J. DUNCAN, *Numerical Ranges of Operators on Normed Spaces and Elements of Normed Algebras*. Cambridge Univ. Press, London, 1971.
- [2] J. T. CHAN, Numerical radius preserving operators on C*-algebras, Arch. Math, 70 (1998), pp. 486-488.
- [3] R. S. DORAN and V. A. BELFI, Characterizations of C*-algebras. The Gelfand-Naimark theorems, Monographs and Textbooks in Pure and Applied Mathematics, 101. Marcel Dekker, Inc, New York, 1986.
- [4] R. EL HARTI and M. MABROUK, Vector space isomorphisms of non-unital reduced Banach *algebras. Annales Universitatis Mariae Curie-Sklodowska, sectio A-Mathematica, 69 (2015), pp. 61-68.
- [5] P. R. HALMOS, A Hilbert Space Problem Book 2nd ed. Springer, New York, 1982.
- [6] G. J. MURPHY, C*-algebras and Operator Theory. Academic Press, 1990.