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1. I NTRODUCTION

Probabilistic functional analysis is an aspect of mathematics that deals with probabilistic
models to solve uncertainties and ambiguities that exist in real world problems. Random non-
linear analysis is a vital area of probabilistic functional analysis that deals with various classes
of random operator equations and related problems and solutions. The development of vari-
ous random methods have transformed the financial markets. Random fixed theorems are well
known stochastic generalizations of classical fixed point theorems and are usually needed in
the theory of random equations, random matrices, random differential equations and differ-
ent classes of random operators emanating in physical systems [[22]]. The origin and various
generalizations of random fixed point theorems exist in literature, for a complete survey see
([[9]], [[18]] and several related references therein). Several interesting papers have been writ-
ten on the convergence and stability of different random iterative schemes for various random
operators, chief among them are: ([[3]], [[4]], [[6]], [[10] - [12]], [[14]], [[18]], [[19]], [[21]],
[[22]] and [[24]]). For example, in 2011, Zhang et al. [[24]] proved almost sureT - stability
and convergence of Ishikawa-type and Mann-type random algorithm forφ- weakly contractive
type random operators in a separable Banach space. Recently, in 2015, Okeke and Kim [[22]]
proved strong convergence and summableT−stability of the random Picard-Mann hybrid iter-
ative process for a generalized class of random operators in separable Banach spaces.

Definition 1.1. Let(E, ‖.‖) be a normed linear space andD a non-empty, convex, closed subset
of E andT : D → D be a selfmap ofD, let x0 ∈ D, the sequence{xn}∞n=1 defined by

xn+1 =
k∑

i=0

αiT
ixn, n ≥ 0,(1.1)

wherek is a fixed integer withk ≥ 1, αi ≥ 0 for eachi and
∑k

i=0 αi = 1, is called Kirk
iterative scheme.

Various authors have written inspiring papers on Kirk-type iterative schemes, worthy to men-
tion are the following: the explicit Kirk-Mann [[23]], explicit Kirk-Ishikawa [[23]], explicit
Kirk-Noor [[2]] and explicit Kirk-multistep [[2]] iterative schemes.

In 2014, Akewe et al. [[2]] proposed an explicit Kirk-multistep iterative schemes and proved
strong convergence and stability results for contractive-like operators in a normed linear space,
they also gave useful numerical examples to back up their schemes. Chugh et al. [[13]], intro-
duced an implicit iterative scheme and observed that implicit iterations have an advantage over
explicit iterations for nonlinear problems as they provide better approximation of fixed points
and are widely used in many applications when explicit iterations are inefficient. The authors
[[13]], discovered that approximation of fixed points in computer oriented programs by using
implicit iterations can reduce the computational cost of the fixed point problems, they went
further to consider a new implicit iteration and study its strong convergence, stability, and data
dependence, they also proved through numerical examples that newly introduced iteration has
better convergence rate than well known implicit Mann iteration as well as implicit Ishikawa
iteration and implicit iterations converge faster as compared to corresponding explicit iterative
schemes for a single mapT.

Definition 1.2 ([13]). Let E be a Banach space. For a self mapT : E → E there exists a real
numberδ ∈ [0, 1) and a monotone increasing functionϕ : R+ → R+ such thatϕ(0) = 0 and
for everyx, y ∈ Y , we have

(1.2) ‖Tx− Ty‖ ≤ δ‖x− y‖+ ϕ(‖x− Tx‖).
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2. M ETHODS/EXPERIMENTAL

The purpose of this study is in three folds: firstly, to develop a modified random implicit-Kirk
multistep iteration and secondly, use the scheme to prove strong convergence andT - stability
for generalized random contractive-type operators. Finally, demonstrate our convergence re-
sults with an example to get better rate of convergence.

We shall need the following definitions, lemmas, and iterative schemes in proving our results:

Definition 2.1. Let (Ω, Σ) be a measurable space andC be a nonempty closed convex subset of
a separable Banach spaceE. A functionT : Ω → C is said to be measurable ifT−1(B ∩ C) ∈
Σ for each Borel setB of E. A functionT : Ω × C → C is called a random operator if
T (·, x) : Ω → C is measurable for everyx ∈ C. A measurable functionp : Ω → C is called a
random fixed point for the operatorT : Ω× C → C if T (ω, p(ω)) = p(ω).

Definition 2.2. Let (Ω, ξ, µ) be a complete probability measure space andE be a nonempty
subset of a separable Banach spaceX. A random operatorT : Ω × E → E is said to be
generalized randomϕ-contractive-like operator if there exists a continuous and nondecreasing
functionϕ : R+ → R+ with ϕ(t) > 0 ∀ t ∈ (0,∞) andϕ(0) = 0 such that for eachp(ω) ∈
F (T ), x, y ∈ E andω ∈ Ω, we have

(2.1) ‖T (ω, x(ω))− T (ω, y(ω))‖ ≤ δ(ω)‖x(ω)− y(ω)‖+ ϕ(‖x(ω)− T (ω, x(ω))‖),

where0 ≤ δ(ω) < 1.

Definition 2.3 ([8]). Let {an}∞n=0 and{bn}∞n=0 be two nonnegative real sequences which con-
verge to a and b respectively. LetJ = limn→∞

|an−a|
|bn−b| ,

i. if J = 0, then{an}∞n=0 converges toa faster than{bn}∞n=0 converges tob;
ii. if 0 < J < ∞, then both{an}∞n=0 and{bn}∞n=0 have the same convergence rate;

iii. if J = ∞, then{bn}∞n=0 converges tob faster than{an}∞n=0 converges toa.

Lemma 2.4 ([7]). If δ is a real number such that0 ≤ δ < 1 and {en}∞n=0 is a sequence of
positive numbers such thatlimn→∞ en = 0, then for any sequence of positive numbers{un}∞n=0

satisfyingun+1 ≤ δun + en, n ∈ N. Then we havelimn→∞ un = 0.

Lemma 2.5([23]). Let (X, ‖.‖) be a normed linear space andT : X → X be a selfmap ofX
satisfying (1.2). Letϕ : R+ → R+ be a subadditive, monotone increasing function such that
ϕ(0) = 0, ϕ(Lu) = Lϕ(u), L ≥ 0, u ∈ R+. Then, for alli ∈ N, L ≥ 0, δ ∈ [0, 1), and for all
x, y ∈ X,

(2.2) ‖T ix− T iy‖ ≤ δi‖x− y‖+
i∑

j=1

(i
j)δ

i−jϕj(‖x− Tx‖).

Definition 2.6. Let (Ω, Σ, µ) be a complete probability measure space andE be a nonempty
subset of a separable Banach spaceX. Let T : Ω × E → E be a random operator. Let
F (T ) = {p(ω) ∈ E : T (ω, p(ω) = p(ω), ω ∈ Ω} be the set of random fixed points ofT . The
random implicit Kirk-multistep iteration is defined thus:
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(2.3)



x0(w) ∈ E,

xn+1(ω) = αn,0x
(1)
n (ω) +

∑q1

i=1 αn,iT
ixn+1(ω),

∑q1

i=0 αn,i = 1,

x
(l)
n (ω) = βl

n,0x
(l+1)
n (ω) +

∑ql+1

i=1 βl
n,iT

ix
(l)
n (ω),

∑ql+1

i=0 β
(l)
n,i = 1, l = 1, 2, ..., k − 2,

x
(k−1)
n (ω) = β

(k−1)
n,0 xn(ω) +

∑qk

i=1 β
(k−1)
n,i T ix

(k−1)
n (ω),

∑qk

i=0 β
(k−1)
n,i = 1,

k ≥ 2, n = 1, 2, ..., whereq1, q2, q3, · · · , qk are random fixed integers withq1 ≥ q2 ≥ q3 ≥
· · · ≥ qk, {αn,i}∞n=1 and{β(l)

n,i}∞n=1 are sequences in [0,1] satisfyingαn,i ≥ 0, αn,0 6= 0, βn,i ≥ 0

andβ
(l)
n,0 6= 0 for eachl with

∑∞
n=1(1− αn,0) = ∞.

The random implicit Kirk-Noor iteration is defined thus:

(2.4)



x0(w) ∈ E,

xn+1(ω) = αn,0x
(1)
n (ω) +

∑q1

i=1 αn,iT
ixn+1(ω),

∑q1

i=0 αn,i = 1,

x
(1)
n (ω) = β

(1)
n,0x

(2)
n (ω) +

∑q2

i=1 β
(1)
n,iT

ix
(1)
n (ω),

∑q2

i=0 β
(1)
n,i = 1,

x
(2)
n (ω) = β

(2)
n,0xn(ω) +

∑q3

i=1 β
(2)
n,iT

ix
(2)
n (ω),

∑q3

i=0 β
(2)
n,i = 1,

whereq1, q2, q3 are random fixed integers withq1 ≥ q2 ≥ q3, {αn,i}∞n=1,{β
(1)
n,i}∞n=1 and{β(2)

n,i}∞n=1

are sequences in [0, 1] satisfyingαn,i ≥ 0, αn,0 6= 0, β
(1)
n,i ≥ 0, β

(1)
n,0 6= 0, β

(2)
n,i ≥ 0 andβ

(2)
n,0 6= 0

and
∑∞

n=1(1− αn,0) = ∞.

The random implicit Kirk-Ishikawa iteration is defined thus:

(2.5)


x0(w) ∈ E,

xn+1(ω) = αn,0x
(1)
n (ω) +

∑q1

i=1 αn,iT
ixn+1(ω),

∑q1

i=0 αn,i = 1,

x
(1)
n (ω) = β

(1)
n,0xn(ω) +

∑q2

i=1 β
(1)
n,iT

ix
(1)
n (ω),

∑q2

i=0 β
(1)
n,i = 1,

whereq1, q2 are random fixed integers withq1 ≥ q2, {αn,i}∞n=1 and{β(1)
n,i}∞n=1 are sequences in

[0, 1] satisfyingαn,i ≥ 0, αn,0 6= 0, β
(1)
n,i ≥ 0, β

(1)
n,0 6= 0 and

∑∞
n=1(1− αn,0) = ∞.

The random implicit Kirk-Mann iteration is defined thus:

(2.6)

 x0(w) ∈ E,

xn+1(ω) = αn,0xn(ω) +
∑q1

i=1 αn,iT
ixn+1(ω),

∑q1

i=0 αn,i = 1,

whereq1 is a random fixed integer,{αn,i}∞n=1 is a sequence in [0, 1] satisfyingαn,i ≥ 0, αn,0 6= 0
and

∑∞
n=1(1− αn,0) = ∞.

The following remark gives the relationship between the random implicit Kirk-multistep it-
erative scheme (2.3) and the other random implicit Kirk-type [(2.4), (2.5) and (2.6)] iterations.
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Remark 2.7. The random implicit Kirk-multistep iteration (2.4) is an important generalization
of random implicit Kirk-Noor (2.4), random implicit Kirk-Ishikawa (2.5) and implicit Kirk-
Mann (2.6) iterations because one can recover (2.4), (2.5) and (2.6) from (2.3). Infact, if k=3 in
(2.3), we get random implicit Kirk-Noor iteration (2.4). If k=2 in (2.3), we get random implicit
Kirk-Ishikawa iteration (2.5) and if k=2 andq2 = 0 in (2.3), we get random implicit Kirk-Mann
iteration (2.6).

Lemma 2.8.Let(X, ‖.‖) be a normed linear space andT : X → X be a self random operators
of X satisfying (2.1). Letϕ : R+ → R+ be a sublinear, monotone increasing function such that
ϕ(0) = 0 andϕ(u) = (1− δ)u for all 0 ≤ δ < 1, u ∈ R+. Then for everyi ∈ N andx, y ∈ Y ,
we have

(2.7) ‖T i(ω, x)− T i(ω, y)‖ ≤ δi‖x(ω)− y(ω)‖+
i∑

j=1

(i
j)δ

i−jϕj(‖x(ω)− T (ω, x)‖).

Proof. We start the proof by showing that ifϕ is subadditive then each of theϕj of ϕ is subad-
ditive. Since we assume thatϕ is subadditive, thenϕ(x(ω) + y(ω)) ≤ ϕ(x(ω)) + ϕ(y(ω)), for
everyx, y ∈ R+. Thus, the subadditivity ofϕ2 yields the following:
ϕ2(x(ω) + y(ω)) = ϕ(ϕ(x(ω) + y(ω))) ≤ ϕ(ϕ(x(ω))) + ϕ(ϕ(y(ω))). Similarly, the subaddi-
tivity of ϕ3 yields the following:
ϕ3(x(ω)+y(ω)) = ϕ(ϕ2(x(ω)+y(ω))) ≤ ϕ(ϕ2(x(ω)))+ϕ(ϕ2(y(ω))) = ϕ3(x(ω))+ϕ3(y(ω)).
Therefore, in general,ϕn (n = 1, 2, 3, . . . ) is subadditive, and it can be written as:ϕn(x(ω) +
y(ω)) ≤ ϕ(ϕn−1(x(ω))) + ϕ(ϕn−1(y(ω))) = ϕn(x(ω)) + ϕn(y(ω)).
The remaining part of the proof of Lemma 2.8, will be done by mathematical induction oni as
follows:
Let i = 1, then contractive condition (2.7) becomes

‖T (ω, x)− T (ω, y)‖ ≤ δ‖x(ω)− y(ω)‖+
1∑

j=1

(1
j)δ

1−jϕj(‖x(ω)− T (ω, x)‖).(2.8)

= δ‖x(ω)− y(ω)‖+ ϕ(‖x(ω)− T (ω, x)‖).(2.9)

Next, supposei = n, wheren ∈ N, then (2.7) becomes

(2.10) ‖T n(ω, x)− T n(ω, y)‖ ≤ δn‖x(ω)− y(ω)‖+
n∑

j=1

(n
j )δn−jϕj(‖x(ω)− T (ω, x)‖).

We now show that the statement is true fori = n + 1.

‖T n+1(ω, x)− T n+1(ω, y)‖ = ‖T n(T (ω, x))− T n(T (ω, y))‖
≤ δn‖T (ω, x)− T (ω, y)‖

+
n∑

j=1

(n
j )δn−jϕj(‖T (ω, x)− T 2(ω, x)‖)

≤ δn(δ‖x(ω)− y(ω)‖+ ϕ(‖x(ω)− T (ω, x)‖))

+
n∑

j=1

(n
j )δn−jϕj(δ‖x(ω)− T (ω, x)‖

+ϕ(‖x(ω)− T (ω, x)‖))
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≤ δn+1‖x(ω)− y(ω)‖+ δnϕ(‖x(ω)− T (ω, x)‖)

+
n∑

j=1

(n
j )δn+1−jϕj(‖x(ω)− T (ω, x)‖)

+
n∑

j=1

(n
j )δn−jϕj+1(‖x(ω)− T (ω, x)‖)

= δn+1‖x(ω)− y(ω)‖+ (n+1
1 )δnϕ(‖x(ω)− T (ω, x)‖)

+(n+2
2 )δn−1ϕ2(‖x(ω)− T (ω, x)‖)

+(n+1
3 )δn−2ϕ3(‖x(ω)− T (ω, x)‖) + · · ·+ (n+1

n−1)δ
2ϕn−1(‖x(ω)− T (ω, x)‖)

+(n+1
n )δϕn(‖x(ω)− T (ω, x)‖) + (n+1

n+1)ϕ
n+1(‖x(ω)− T (ω, x)‖).(2.11)

3. Results and Discussion

3.1. Convergence Results in Separable Banach Spaces.

Theorem 3.1. Let (E, ‖.‖) be a separable Banach space andT : Ω × E → E be a continuous
generalized randomϕ-contractive-like operator with a random fixed pointp(ω) ∈ F (T ) which
satisfies (2.7) for eachx, y ∈ E, 0 ≤ δ(ω) < 1 andϕ : R+ → R+ a continuous and nondecreas-
ing function withϕ(t) > 0 ∀ t ∈ (0,∞) andϕ(0) = 0. Let {xn}∞n=0 be the random implicit
Kirk- multistep iteration defined by (2.3). Then

i. T defined by (2.7) has a unique random fixed pointp(ω).
ii. the random implicit Kirk-multistep iteration converges strongly top(ω) of T .

Proof. (i) We shall first establish that the mappingT satisfying the generalized randomϕ-
contractive-like condition (2.7) has a unique random fixed pointp(ω).
Suppose there existp1(ω), p2(ω) ∈ FT , and thatp1(ω) 6= p2(ω),
with ‖p1(ω)− p2(ω)‖ > 0, then

0 < ‖p1(ω)− p2(ω)‖ = ‖T i(ω, p1(ω))− T i(ω, p2(ω))‖

≤
i∑

j=0

(i
j)δ

i−jϕj(‖p1(ω)− T (ω, p1(ω))‖) + δi‖p1(ω)− p2(ω)‖

=
i∑

j=0

(i
j)δ

i−jϕj(0) + δi‖p1(ω)− p2(ω)‖.(3.1)

Thus,(1− δi)‖p1(ω)−p2(ω)‖ ≤ 0. Sinceδ ∈ [0, 1), then1− δi > 0 and‖p1(ω)−p2(ω)‖ ≤ 0.
Since norm is nonnegative we have that‖p1(ω)− p2(ω)‖ = 0. That is,p1(ω) = p2(ω) = p(ω)
(say). Thus,T has a unique random fixed pointp(ω).

Next, we shall establish thatlimn→∞xn(ω) = p(ω). That is, we show that the random im-
plicit Kirk-multistep iterative scheme converges strongly top(ω) of T.
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Using generalizedϕ− contractive-like condition (2.7) in (2.3), we have

‖xn+1(ω)− p(ω)‖ ≤ αn,0‖x1
n(ω)− p(ω)‖+

q1∑
i=1

αn,i‖T i(ω, xn+1(ω))− T i(ω, p(ω))‖

≤ αn,0‖x(1)
n (ω)− p(ω)‖+ (

q1∑
i=1

αn,iδ
i)‖xn+1(ω)− p(ω)‖

+

q1∑
i=1

αn,i(
i∑

j=0

(i
j)δ

i−jϕj(‖p(ω)− T i(ω, p(ω))‖))

≤ αn,0

1−
∑q1

i=1 αn,iδ
i‖x

(1)
n (ω)− p(ω)‖.(3.2)

We note thatβl
n,i are measurable sequences in [0,1] for eachl andq1, ql are fixed integer (for

eachl) for n = 1, 2, 3, . . . and1 ≤ l ≤ k−2. Similarly, using the generalizedϕ-contractive-like
condition (2.7) in (2.3), we have the following

‖x(1)
n (ω)− p(ω)‖ ≤

β1
n,0

1−
∑q2

i=1 β1
n,iδ

i‖x
(2)
n (ω)− p(ω)‖.(3.3)

‖x(2)
n (ω)− p(ω)‖ ≤

β2
n,0

1−
∑q3

i=1 β2
n,iδ

i‖x
(3)
n (ω)− p(ω)‖.(3.4)

...

‖x(k−2)
n (ω)− p(ω)‖ ≤

βk−2
n,0

1−
∑qk−1

i=1 βk−2
n,i δi

‖x(k−1)
n (ω)− p(ω)‖.(3.5)

Finally, using the generalizedϕ-contractive-like condition (2.7) in (2.3) for (k-1), we have

‖x(k−1)
n (ω)− p(ω)‖ ≤

βk−1
n,0

1−
∑qk

i=1 βk−1
n,i δi

‖xn(ω)− p(ω)‖.(3.6)

Substituting (3.3), (3.4), (3.5) and (3.6) respectively in (3.2) and simplifying, we obtain

‖xn+1(ω)− p(ω)‖ ≤ [
αn,0

1−
∑q1

i=1 αn,iδ
i ][

β1
n,0

1−
∑q2

i=1 β1
n,iδ

i ][
β2

n,0

1−
∑q3

i=1 β2
n,iδ

i ]...

[
βk−2

n,0

1−
∑qk−1

i=1 βk−2
n,i δi

][
βk−1

n,0

1−
∑qk

i=1 βk−1
n,i δi

]‖xn(ω)− p(ω)‖.(3.7)

Note that:

1− αn,0

1−
∑q1

i=1 αn,iδ
i =

1− [
∑q1

i=1 αn,iδ
i + αn,0]

1−
∑q1

i=1 αn,iδ
i ≥ 1− [

q1∑
i=1

αn,iδ
i + αn,0]

hence, αn,0

1−
Pq1

i=1 αn,iδ
i ≤

∑q1

i=1 αn,iδ
i + αn,0 Let δi < δ < 1, then

q1∑
i=1

αn,iδ
i + αn,0 ≤ (1− αn,0)δ + αn,0

That is,

(3.8)
αn,0

1−
∑q1

i=1 αn,iδ
i ≤ (1− αn,0)δ + αn,0.
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Therefore,

‖xn+1(ω)− p(ω)‖ ≤ [(1− αn,0)δ + αn,0][(1− β1
n,0)δ + β1

n,0][(1− β
(2)
n,0)δ + β2

n,0]...

[(1− βk−2
n,0 )δ + βk−2

n,0 ][(1− βk−1
n,0 )δ + βk−1

n,0 ]‖xn(ω)− p(ω)‖
≤ [1− (1− αn,0)(1− δ)]‖xn(ω)− p(ω)‖

≤
n∏
i

[1− (1− αi,0)(1− δ)]‖x0(ω)− p(ω)‖

≤ e−
Pn

i [(1−αi,0)(1−δ)]‖x0(ω)− p(ω)‖.(3.9)

Hence, using the fact
∑n

i (1 − αi,0) = ∞, thenlimn→∞ ‖xn+1(ω) − p(ω)‖ = 0. That is, the
random implicit Kirk multistep iterative scheme (2.3) converges strongly top(ω). This ends the
proof.

Theorem 3.1 leads to the following corollary:

Corollary 3.2. Let (E, ‖.‖) be a separable Banach space andT : Ω × E → E be a contin-
uous generalized randomϕ-contractive-like operator with a random fixed pointp(ω) ∈ F (T )
which satisfies (2.7) for eachx, y ∈ E, 0 ≤ δ(ω) < 1 andϕ : R+ → R+ a continuous and
nondecreasing function withϕ(t) > 0 ∀ t ∈ (0,∞) andϕ(0) = 0. Let {xn}∞n=0 be the random
implicit Kirk-Noor, random implicit Kirk-Ishikawa, random implicit Kirk-Mann iterations de-
fined respectively by (2.4), (2.5) and (2.6). Then
(a)T defined by (2.7) has a unique random fixed pointp(ω).
(b)i) the random implicit Kirk-Noor iteration (2.4) converges strongly top(ω) of T ;
(b)ii) the implicit random Kirk-Ishikawa iteration (2.5) converges strongly top(ω) of T ;
(b)iii) the implicit random Kirk-Mann iteration (2.6) converges strongly top(ω) of T.

3.2. Stability Results in Normed Linear Spaces.

Theorem 3.3. Let (X, ‖.‖) be a normed linear space andT : Ω × X → X be a continu-
ous generalized randomϕ-contractive-like operator with a random fixed pointp(ω) ∈ F (T )
which satisfies (2.7) for eachx, y ∈ X, 0 ≤ δ(ω) < 1 andϕ : R+ → R+ a continuous and
nondecreasing function withϕ(t) > 0 ∀ t ∈ (0,∞) andϕ(0) = 0. If the random implicit
Kirk-multistep iterative scheme{xn}∞n=0 defined by (2.3) converges strongly top(ω) . Then the
random iterative scheme (2.3) isT−stable.

Proof. Let {yn(ω)}∞n=0 be any sequence of random variables inX and

let εn = ‖yn+1(ω)− αn,0y
(1)
n (ω)−

∑q1

i=1 αn,iT
i(ω, yn+1(ω))‖

where
y

(1)
n (ω) = β

(1)
n,0y

(2)
n (ω) +

∑q1

i=1 β
(1)
n,iT

i(ω, z
(1)
n (ω)),

∑q2

i=0 β
(1)
n,i = 1,

y
(l)
n (w) = β

(l)
n,0y

(l+1)
n (ω) +

∑ql+1

i=1 β
(l)
n,iT

i(ω, y
(l)
n (ω)),

∑ql+1

i=0 β
(l)
n,i = 1, l = 1(1)k − 2

y
(k−1)
n (ω) = β

(k−l)
n,0 yn(ω) +

∑qk

i=1 β
(l)
n,iT

i(ω, y
(k−1)
n (ω)),

∑qk

i=0 β
(k−1)
n,i = 1.

Supposelimn→∞εn = 0, we show thatlimn→∞yn(ω) = p(ω) by using generalized random
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ϕ-contractive-like condition (2.7).

‖yn+1(ω)− p(ω)‖ ≤ ‖yn+1(ω)− αn,0y
(1)
n (ω)−

q1∑
i=1

αn,iT
i(ω, yn(ω))‖

+||αn,0y
(1)
n (ω) +

q1∑
i=1

αn,iT
i(ω, yn+1(ω))− p(ω)‖

≤ εn + αn,0‖y(1)
n (ω)− p(ω)‖+

q1∑
i=1

αn,i‖T i(ω, yn+1(ω))− p(ω)‖

≤ εn + αn,0‖y(1)
n (ω)− p(ω)‖+

q1∑
i=1

αn,iδ
i(ω)‖yn+1(ω)− p(ω)‖

−
q1∑

i=1

αn,i

i∑
j=0

(
i
j

)
δi−j(ω)ϕj(‖T ip(ω)− p(ω)‖)

= εn + αn,0‖y(1)
n (ω)− p(ω)‖+

q1∑
i=1

αn,iδ
i(ω)‖yn+1(ω)− p(ω)‖.

Thus,

(3.10) ‖yn+1(ω)− p(ω)‖ ≤ εn

1−
∑q1

i=1 αn,iδ
i(ω)

+
αn,0

1−
∑q1

i=1 αn,iδ
i(ω)

‖y(1)
n (ω)− p(ω)‖.

Let λn = αn,0

1−
Pq1

i=1 αn,iδ
i(ω)

then

1− λn = 1− αn,0

1−
∑q1

i=1 αn,iδ
i(ω)

=
1−

∑q1

i=1 αn,iδ
i(ω)− αn,0

1−
∑q1

i=1 αn,iδ
i(ω)

≥ 1−

(
q1∑

i=1

αn,iδ
i(ω) + αn,0

)
Therefore,

(3.11) λn ≤
q1∑

i=1

αn,iδ
i(ω) + αn,0 =

q1∑
i=1

αn,iδ
i(ω) <

q1∑
i=1

αn,i = 1.

Similarly,

βn,0

1−
∑q2

i=1 β
(1)
n,iδ

i(ω)
≤

q2∑
i=1

β
(1)
n,iδ

i(ω) <

q2∑
i=1

β
(1)
n,i = 1;

βn,0

1−
∑q3

i=1 β
(2)
n,iδ

i(ω)
≤

q3∑
i=1

β
(2)
n,iδ

i(ω) <

q3∑
i=1

β
(2)
n,i = 1;

βn,0

1−
∑q2

i=1 β
(1)
n,iδ

i(ω)
≤

q4∑
i=1

β
(3)
n,iδ

i(ω) <

q4∑
i=1

β
(3)
n,i = 1;

...
βn,0

1−
∑qk

i=1 β
(k−1)
n,i δi(ω)

≤
qk∑

i=1

β
(k−1)
n,i δi(ω) <

qk∑
i=1

β
(k−1)
n,i = 1.(3.12)
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We note thatβl
n,i are measurable sequences in [0,1] for eachl andq1, ql are fixed integer (for

eachl) for n = 1, 2, 3, . . . and1 ≤ l ≤ k − 2. Similarly, following procedure in (3.10), we
obtain

‖y(1)
n (ω)− p(ω)‖ ≤

β
(1)
n,0

1−
∑q2

i=1 β
(1)
n,iδ

i(ω)
‖y(2)

n (ω)− p(ω)‖;(3.13)

‖y(2)
n (ω)− p(ω)‖ ≤

β
(2)
n,0

1−
∑q3

i=1 β
(2)
n,iδ

i(ω)
‖y(3)

n (ω)− p(ω)‖;(3.14)

‖y(3)
n (ω)− p(ω)‖ ≤

β
(3)
n,0

1−
∑q4

i=1 β
(3)
n,iδ

i(ω)
‖y(4)

n (ω)− p(ω)‖.(3.15)

Continuing this process fork − 1, we obtain

(3.16) ‖y(k−1)
n (ω)− p(ω)‖ ≤

β
(k−1)
n,0

1−
∑qk

i=1 β
(k−1)
n,i δi(ω)

‖yn(ω)− p(ω)‖.

Observe that

(3.17)
‖y(1)

n (ω)− p(ω)|| ≤ ‖y(2)
n (ω)− p(ω)|| ≤ ||y(3)

n (ω)− p(ω)‖ ≤ · · ·
≤ ‖y(k−1)

n (ω)− p(ω)‖ ≤ ‖yn(ω)− p(ω)‖.

Substituting (3.8) into (3.1), we obtain

(3.18) ‖yn+1(ω)− p(ω)‖ ≤ εn

1−
∑q1

i=1 αn,iδ
i(ω)

+
αn,0

1−
∑q1

i=1 αn,iδ
i(ω)

‖yn(ω)− p(ω)‖.

Let κ = αn,0

1−
Pq1

i=1 αn,iδ
i(ω)

andηn = εn

1−
Pq1

i=1 αn,iδ
i(ω)

Then, (3.18) becomes

(3.19) ‖yn+1(ω)− p(ω)‖ ≤ ηn + κ‖yn(ω)− p(ω)‖.

Since,ηn → 0 andκ < 1, and from Lemma 2.4, we can conclude that
limn→∞‖yn(ω)− p(ω)‖ = 0 or limn→∞yn(ω) = p(ω).

Conversely, supposelimn→∞||yn(w) = p(w) for F (T ) 6= φ, then we show thatlimn→∞εn = 0.

εn = ‖yn+1(ω)− αn,0y
(1)
n (ω)−

q1∑
i=1

αn,iT
i(ω, yn+1(ω))‖

≤ ‖yn+1(ω)− p(ω)‖+ ‖p(ω)− αn,0y
(1)
n (ω) +

q1∑
i=1

αn,iT
i(ω, yn+1(ω))

≤ ‖yn+1(ω)− p(ω)‖+ αn,0‖y(1)
n (ω)− p(ω)‖+

q1∑
i=1

αn,i‖T i(ω, yn+1(ω))− T i(ω, p(ω))‖

≤ ‖yn+1(ω)− p(ω)‖+ αn,0‖yn(ω)− p(ω)‖

≤ (1 +

q1∑
i=1

αn,iδ
i(ω))‖yn(ω)− p(ω)‖

AJMAA, Vol. 15, No. 2, Art. 15, pp. 1-14, 2018 AJMAA

http://ajmaa.org


CONVERGENCE SPEED OF SOME RANDOM IMPLICIT-K IRK-TYPE ITERATIONS 11

Since‖yn(ω)− p(ω)‖ → 0 asn →∞, thenlimn→∞εn = 0.
Therefore, the random implicit Kirk multistep iteration (2.3) isT− stable. This ends the
proof.

Theorem 3.3 leads to the following corollary:

Corollary 3.4. Let (X, ‖.‖) be a normed linear space andT : Ω × X → X be a continuous
generalized randomϕ-contractive-like operator with a random fixed pointp(ω) ∈ F (T ) which
satisfies (2.7) for eachx, y ∈ X, 0 ≤ δ(ω) < 1 andϕ : R+ → R+ a continuous and nonde-
creasing function withϕ(t) > 0 ∀ t ∈ (0,∞) andϕ(0) = 0. If the random implicit Kirk-Noor,
random implicit Kirk-Ishikawa, random implicit Kirk-Mann iterations{xn}∞n=0 defined respec-
tively by (2.4), (2.5) and (2.6) converges strongly to the random fixed pointp(ω). Then
(i) the random iteration (2.4) isT− stable;
(ii) the random iteration (2.5) isT−stable;
(iii) the random iteration (2.6) isT−stable.

3.3. Rate of Convergence of the Various Random-Implicit-Kirk-Type Iterative Schemes.
We compare our new implicit random Kirk multistep iterative scheme (2.3) with others defined
by (2.4), (2.5) and (2.6) using the following example.

Example 3.1. Let E = [0, 1] andT : [0, 1] → [0, 1] , T (ω, x(ω)) = x
8
, with x0 6= 0, αn,0 =

βn,0 = 1− 8√
n
,

αn,i = βl
n,i = 8√

n
, n ≥ 25, for eachl and forn = 1, 2, 3..., 24, αn,i = βl

n,i = 0 for eachl. Let
p(ω) = 0.

From the random implicit Kirk Mann iteration (RIKM) defined by (2.6):
xn+1(ω) = αn,0xn(ω) +

∑q1
i=1 αn,1T

i(ω, xn+1(ω)),

We have,

xn+1(ω) = (1− 8√
n

)xn(ω) +
2∑

i=1

αn,iT
i(ω, xn+1(ω)),

= (1− 8√
n

)xn(ω) +
8√
n
× xn+1(ω)

8
+

8√
n
× xn+1(ω)

64

⇒

xn+1(ω) = (1− 8√
n

)xn(ω) +
1√
n

xn+1(ω) +
1

8
√

n
xn+1(ω)

(1− 1√
n
− 1

8
√

n
)xn+1(ω) = (1− 8√

n
)xn(ω)

(1− 9

8
√

n
)xn+1(ω) = (1− 8√

n
)xn(ω)

8
√

n− 9

8
√

n
xn+1(ω) =

√
n− 8√

n
xn(ω)

(3.20) xn+1(ω) =
8(
√

n− 8)

8
√

n− 9
xn(ω) =

8
√

n− 64

8
√

n− 9
xn(ω) =

n∏
j=25

8
√

n− 64

8
√

n− 9
x0(ω).
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Similarly, the random implicit Kirk-Ishikawa (RIKI) iteration gives

(3.21) xn+1(ω) = (
8
√

n− 64

8
√

n− 9
)2xn(ω) =

n∏
j=25

(
8
√

n− 64

8
√

n− 9
)2x0(ω).

Also, the random implicit Kirk-Noor (RIKN) iteration gives

(3.22) xn+1(ω) = (
8
√

n− 64

8
√

n− 9
)3xn(ω) =

n∏
j=25

(
8
√

n− 64

8
√

n− 9
)3x0(ω).

Finally, the random implicit Kirk-Multistep (RIKMulti) iteration gives

(3.23) xn+1(ω) = (
8
√

n− 64

8
√

n− 9
)kxn(ω) =

n∏
j=25

(
8
√

n− 64

8
√

n− 9
)kx0(ω).

Next, we use definition 2.3 to compare the random implicit Kirk-type iterative schemes as
follows:
Case 1:Comparison of RIKMulti and RIKN gives:
Let J = limn→∞

|xn+1(RIKMulti)−p(ω)|
|xn+1(RIKN)−p(ω)| = limn→∞

∏n
j=25(

8
√

j−64
8
√

j−9
)(k−3)

= limn→∞
∏n

j=25(1−
55

8
√

j−9
)(k−3) ≤ limn→∞

∏n
j=25(1−

1
j
)(k−3)

= limn→∞(24
25
× 25

26
× 26

27
. . . n−1

n
)(k−3) = 0.

Case 2:Comparison of RIKN and RIKI gives:
Let J = limn→∞

|xn+1(RIKN)−p(ω)|
|xn+1(RIKI)−p(ω)| = limn→∞

∏n
j=25(

8
√

j−64
8
√

j−9
)(3−2)

= limn→∞
∏n

j=25(1−
55

8
√

j−9
) ≤ limn→∞

∏n
j=25(1−

1
j
)

= limn→∞(24
25
× 25

26
× 26

27
. . . n−1

n
) = 0.

Case 3:Comparison of RIKI and RIKM gives:
Let J = limn→∞

|xn+1(RIKI)−p(ω)|
|xn+1(RIKM)−p(ω)| = limn→∞

∏n
j=25(

8
√

j−64
8
√

j−9
)(2−1)

= limn→∞
∏n

j=25(1−
55

8
√

j−9
) ≤ limn→∞

∏n
j=25(1−

1
j
)

= limn→∞(24
25
× 25

26
× 26

27
. . . n−1

n
) = 0.

3.4. Summary. In case 1, it is shown that the random implicit Kirk-multistep (RIKMulti) it-
eration converges faster than the random implicit Kirk-Noor (RIKN) iteration to the random
fixed pointp(ω) = 0. Case 2 shows that the random implicit Kirk-Noor (RIKN) iteration con-
verges faster than the random implicit Kirk-Ishikawa (RIKI) iteration to the random fixed point
p(ω) = 0, while in case 3, the random implicit Kirk-Ishikawa (RIKI) iteration converges faster
than the random implicit Kirk-Mann (RIKM) iteration to the random fixed pointp(ω) = 0.

4. CONCLUSION .

We have shown the convergence of random implicit kirk-multistep iteration to the unique
random fixed point for generalized contractive-like random operator defined in a separable Ba-
nach space. We also proved stability results of this scheme in a normed linear space. It was
also demonstrated through example, that our new scheme perform better than other random
implicit iterations considered in this work in terms of convergence. Thus, the schemes have
good potentials for further applications in equilibrium problems in computer science, physics
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and economics.

5. ABBREVIATIONS .

RIKM represents random implicit Kirk Mann iteration, RIKI represents random implicit
Kirk-Ishikawa iteration, RIKN represents random implicit Kirk-Noor iteration, RIKMulti rep-
resents random implicit Kirk-multistep iteration.
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