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ABSTRACT. The main aim of this paper is to introduce a stochastic version of multistep type
iterative scheme called a modified random implicit-Kirk multistep iterative scheme and prove
strong convergence and stability results for a class of generalized contractive-type random op-
erators. The rate of convergence of the random iterative schemes are also examined through an
example. The results show that our new random implicit kirk multistep scheme perform better
than other implicit iterative schemes in terms of convergence and thus have good potentials for
further applications in equilibrium problems in computer science, physics and economics.
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1. INTRODUCTION

Probabilistic functional analysis is an aspect of mathematics that deals with probabilistic
models to solve uncertainties and ambiguities that exist in real world problems. Random non-
linear analysis is a vital area of probabilistic functional analysis that deals with various classes
of random operator equations and related problems and solutions. The development of vari-
ous random methods have transformed the financial markets. Random fixed theorems are well
known stochastic generalizations of classical fixed point theorems and are usually needed in
the theory of random equations, random matrices, random differential equations and differ-
ent classes of random operators emanating in physical systems [[22]]. The origin and various
generalizations of random fixed point theorems exist in literature, for a complete survey see
([[211, [[18]] and several related references therein). Several interesting papers have been writ-
ten on the convergence and stability of different random iterative schemes for various random
operators, chief among them are{ ([[3]],/[[4]]._[[6]],[[LO] |- [12]],.1[14]],[1[28]], 1291, I[21]],

[[22]] and [[24]]). For example, in 2011, Zhang et all_[[24]] proved almost sliestability

and convergence of Ishikawa-type and Mann-type random algorithg f@eakly contractive

type random operators in a separable Banach space. Recently, in 2015, Okeke and Kim [[22]]
proved strong convergence and summablestability of the random Picard-Mann hybrid iter-
ative process for a generalized class of random operators in separable Banach spaces.

Definition 1.1. Let(E, ||.||) be a normed linear space ardla non-empty, convex, closed subset
of FandT : D — D be a selfmap oD, letx, € D, the sequencéz,, }> , defined by

k
(1.2) Tpi1 = ZaiTixn, n >0,
i=0

wherek is a fixed integer withk > 1, o; > 0 for each: and Zf:o a; = 1, is called Kirk
iterative scheme.

Various authors have written inspiring papers on Kirk-type iterative schemes, worthy to men-
tion are the following: the explicit Kirk-Mann [[[23]], explicit Kirk-Ishikawa![[23]], explicit
Kirk-Noor [[2]] and explicit Kirk-multistep [[2]] iterative schemes.

In 2014, Akewe et al. [[2]] proposed an explicit Kirk-multistep iterative schemes and proved
strong convergence and stability results for contractive-like operators in a normed linear space,
they also gave useful numerical examples to back up their schemes. Chughlet al. [[13]], intro-
duced an implicit iterative scheme and observed that implicit iterations have an advantage over
explicit iterations for nonlinear problems as they provide better approximation of fixed points
and are widely used in many applications when explicit iterations are inefficient. The authors
[[L3]], discovered that approximation of fixed points in computer oriented programs by using
implicit iterations can reduce the computational cost of the fixed point problems, they went
further to consider a new implicit iteration and study its strong convergence, stability, and data
dependence, they also proved through numerical examples that newly introduced iteration has
better convergence rate than well known implicit Mann iteration as well as implicit Ishikawa
iteration and implicit iterations converge faster as compared to corresponding explicit iterative
schemes for a single map

Definition 1.2 ([13]). Let £ be a Banach space. For a self map. £ — FE there exists a real
numbersd € [0,1) and a monotone increasing functign: R* — R* such thaty(0) = 0 and
for everyz,y € Y, we have

(1.2) [Tz =Tyl < bl —yll + ¢(llz — Tz|).
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2. METHODS/EXPERIMENTAL

The purpose of this study is in three folds: firstly, to develop a modified random implicit-Kirk
multistep iteration and secondly, use the scheme to prove strong convergerite stability
for generalized random contractive-type operators. Finally, demonstrate our convergence re-
sults with an example to get better rate of convergence.

We shall need the following definitions, lemmas, and iterative schemes in proving our results:

Definition 2.1. Let ({2, X) be a measurable space aftbe a nonempty closed convex subset of
a separable Banach spade A functionT : Q — C'is said to be measurablet (BN C)

3] for each Borel seBB of E. A functionT : Q x C' — (' is called a random operator if
T(-,z): Q — Cis measurable for every € C'. A measurable functiop: 2 — C'is called a
random fixed point for the operat@r: Q@ x C — C'if T(w, p(w)) = p(w).

Definition 2.2. Let (2, &, 1) be a complete probability measure space dndbe a nonempty
subset of a separable Banach spake A random operatofl’ : () x F — FE is said to be
generalized randomp-contractive-like operator if there exists a continuous and nondecreasing
functiony : RT — RT with p(¢t) > 0V ¢ € (0,00) and¢(0) = 0 such that for each(w) €
F(T),z,y € Fandw € (), we have

21)  |T(w,z(w)) = T(w,yW))[ < dw)llzw) = y(w)|| + ¢(llz(w) — T(w, z(w))]]),
where0 < §(w) < 1.

Definition 2.3 ([8]). Let{a,};>, and{b,};>, be two nonnegative real sequences which con-

verge to a and b respectively. Lét= limnﬁm%,

i. if J =0, then{a,};°, converges ta faster than{b, }2° , converges to;
ii. if 0 < J < o0, then both{a,, }>>, and{b,}>> , have the same convergence rate;
iii. if J = oo, then{b, }>°, converges td faster than{a, }°>° , converges ta.

Lemma 2.4 ([7]). If ¢ is a real number such that < 6 < 1 and{e,}>2, is a sequence of
positive numbers such thhtn,, ., e, = 0, then for any sequence of positive numbfars}>
satisfyingu,,.1 < du, + e,, n € N. Then we havém,, ., u,, = 0.

Lemma 2.5([23]). Let (X, |.||) be a normed linear space arfd: X — X be a selfmap ok
satisfying[(1.R). Letr : Rt — R* be a subadditive, monotone increasing function such that
©(0) =0, p(Lu) = Lp(u), L > 0,u € RT. Then, foralli e N, L > 0,6 € [0,1), and for all

x,y € X,

(22) |T'z = T'y|| < 6"l =yl + Y ()0 (o — T]]).

Jj=1

Definition 2.6. Let (2, %, 1) be a complete probability measure space d@nde a nonempty
subset of a separable Banach spaXe LetT : Q2 x F — FE be a random operator. Let
F(T)={pw) € E:T(w,p(w) = pw),w € Q} be the set of random fixed points®f The
random implicit Kirk-multistep iteration is defined thus:
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(

*TO(w) € E7

Eni1(W) = anorh) (@) + S, an T (@), Sy ani =1,

(2.3)
2 (W) = Bk (@) + T B, Tian (W), T By = L1 = 1,2,k =2,
k— k— k=1)r; (k— . k—
| ol (w) = BT () + 3% UTial TV (w), Tk, Y =1,
k>2 n=12,.. whereq,q,qs, - ,q are random fixed integers with > ¢ > ¢3 >

c > Qs {om i 102 and{ﬁff?i};o:l are sequences in [0,1] satisfying; > 0, a,, 0 # 0, 3,,; > 0

andﬁff?o # 0 for eachl with >°>° (1 — ay,0) = 0.

TZ’L—

The random implicit Kirk-Noor iteration is defined thus:
[Eo(w) S E7

xn—i—l( ) = On Oxgl )< ) + Z;’il Oén,iTixn+1 (w>7 g;o =1,

(2.4)
w(w) = Fgwn? (@) + T AT (@), T Bd =1,

2 % 2
| 2D(w) = 8L (w) + X8, BT 2D (W), Y8, 88 =1,

whereq,, ¢2, g3 are random fixed integers with > ¢ > ¢s, {ozm}n 1,{6732}” 1 and{ﬂnzl};?:1
are sequences in [0, 1] satisfying ; > 0, a,, 0 # 0, Bm > 6 #0, ﬂ >0 andﬂ #0
andznzl( — Q) = 0.

The random implicit Kirk-Ishikawa iteration is defined thus:

xO(w) € Ev
(2.5) Tpr1(w) = ap 0:177(11)( )+ i T (w), N =1,
o) (W) = Blpwn(w) + X8, BT (W), 8, B =

wheregq;, ¢ are random fixed integers With > ¢o, {a,,;}5>, and {Bmi};’;’:l are sequences in
[0, 1] satisfyinga,; > 0, a9 # 0, ﬁm >0, ﬁno #0and> > (1 — ay) = co.

The random implicit Kirk-Mann iteration is defined thus:

Io(w) € Ev
(2.6)
3371—%1(“}) = an,Oxn<w> + fil an,iTixn-s-l (w)> ;I;o an; =1,

whereg; is arandom fixed integefov,, ; }5° ; is a sequence in [0, 1] satisfying, ; > 0, a0 # 0
andd " (1 — ay) = o0.

The following remark gives the relationship between the random implicit Kirk-multistep it-
erative scheme (2.3) and the other random implicit Kirk-type [(2.4)] (2.5)[and (2.6)] iterations.
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Remark 2.7. The random implicit Kirk-multistep iteration (2.4) is an important generalization
of random implicit Kirk-Noor [(2.4), random implicit Kirk-Ishikawa (2.5) and implicit Kirk-
Mann (2.6) iterations because one can recoyer|(2[4)] (2.5)[and (2.6) (2.3). Infact, if k=3 in
(2.3), we get random implicit Kirk-Noor iteration (2.4). If k=2 in (2.3), we get random implicit
Kirk-Ishikawa iteration [(2.p) and if k=2 ang, = 0 in (2.3), we get random implicit Kirk-Mann

iteration (2.6).

Lemma 2.8.Let(X, ||.||) be a normed linear space affd: X — X be a self random operators
of X satisfying[(2.1L). Lep : R — R* be a sublinear, monotone increasing function such that
0(0) =0andy(u) = (1 —d)uforall0 < < 1, u € RT. Then forevery € Nandz,y € Y,

we have

27 |T(w,2) = T'(w,y)]| < 0'[lo(w |+Z )07 (|a(w) = T(w, 2)])-

Proof. We start the proof by showing thatfis subadditive then each of the of ¢ is subad-
ditive. Since we assume thatis subadditive, thep(z(w) + y(w)) < p(z(w)) + ¢(y(w)), for
everyz,y € RT. Thus, the subadditivity op? yields the following:

F(2(w) + (@) = plp(a(w) + y(©)) < P(p(a(w))) + P(p(y(w))). Similarly, the subaddi-
tivity of ? yields the following:

P (z(w)+y (W) = e(@*(2(w)+y(@) < (W) +e(P*(Y(Ww))) = ¢*(2(w))+¢° (y(w)).

Therefore, in general,™ (n = 1,2,3,...) is subadditive, and it can be written gs?(z(w) +
y()) < g1 (2(w))) + (" (y()) = ¢ (@) + " (y(w)).

The remaining part of the proof of Lemrpa 2.8, will be done by mathematical inductiomasn
follows:
Let: = 1, then contractive conditiof (3.7) becomes

(2.8) [T(w,z) =Twy)l < dlz(w ||+Z )07 (o (w) = T(w, 2)])).

(2.9) = dfz(w) =yl + w(Hx( ) = T(w,2)]]).
Next, suppose = n, wheren € N, then [2.7) becomes

(2.10) [|T"(w,z) — T"(w,y)|| < 8" [z (w |+Z )" (| (w) — T(w, z)])).
We now show that the statement is truefef n + 1.

1T w, 2) = T Hw, )| = IT"(T(w, ) = T"(T(w,y))]
5"||T(w z) = T(w,y)|

IA

+Z )8" I (|7 (w, z) — T*(w, 7))

IN

5"(5!\96( ) =yl + ¢(llz(w) = T(w, 2)[]))
+Z )61 (8|2 (w) — T(w, z)||

+90(||93( ) = T(w,2)[1))
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< 5”“||fv( ) =yl +"e(l|z(w) = T(w, 2)])
+Z )" (||l (w) — T(w, 2)1)
+Z )6" 7 (la(w) = T(w, 2)]))
= 5”“!\37( ) =yl + (H"e(lz(w) — Tw, )l)
+(57)0" P (lr(w) = T(w, z)|)
+(T)" P (lr(w) = T(w, 2)[) + - + (F)%e" (o (w) = T(w, z))
(211)  +G)e" (lz(w) = T(w,2)]) + (Zi}) " (z(w) = T(w, 2)])).

3. Results and Discussion

3.1. Convergence Results in Separable Banach Spaces.

Theorem 3.1.Let (E, ||.||) be a separable Banach space and2 x £ — E be a continuous
generalized random-contractive-like operator with a random fixed pairiv) € F'(7') which
satisfies) foreachy € F,0 < §(w) < 1andy : RT — R* a continuous and nondecreas-
ing function withe(t) > 0V ¢t € (0,00) andp(0) = 0. Let {z,,}°°, be the random implicit
Kirk- multistep iteration defined by (2.3). Then

i. T defined by|(2]7) has a unique random fixed ppifut).
ii. the random implicit Kirk-multistep iteration converges stronglyfa) of 7'

Proof. (i) We shall first establish that the mappifigsatisfying the generalized random
contractive-like conditior{ (2]7) has a unique random fixed poinf.

Suppose there exigt (w), p2(w) € Fr, and thap, (w) # p2(w),

with ||p1 (w) — pa(w)|| > 0, then

0 < IIPl(w)—pa(W)ll=IITi(w7p1(w))—Ti(w,m(w))ll
< Z(é)y*js@j(llpl(@ = T(w, pr(@)) + &'llp1(w) = p2(w)]
(3.1) = > ()87 (0) + 8'lpr(w) — p2(W)]]-

j=0
Thus,(1 —8")||p1(w) — p2(w)| < 0. Sinces € [0, 1), thenl —§° > 0 and||p; (w) — p2(w)|| < 0.

Since norm is nonnegative we have that(w) — pa(w)|| = 0. That is,p; (w) = pa(w) = p(w)
(say). Thus{ has a unique random fixed point).

Next, we shall establish thétm,, ...z,(w) = p(w). That is, we show that the random im-
plicit Kirk-multistep iterative scheme converges stronglyte) of 7'
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Using generalizeg— contractive-like conditior{ (2]7) in (2.3), we have

|Za41(@) =@ < anollzg (@) = @)+ Y anll T (@, 2p1 (W) = T (w, p(w))]

i=1

< agllz) (W) = pw)] + (Z 0" )| 41 (w) = p(w)]

+ Z ani(Y_ ()0 (lp(w) = T (w, p@)I))

J=0

(3.2) < S YD (w) — pw)].

- q1 )
1-— i=1 oznﬂ-é

We note thaﬁfm are measurable sequences in [0,1] for elaahd ¢, , ¢; are fixed integer (for
eachl) forn =1,2,3,...andl <[ < k—2. Similarly, using the generalizegtcontractive-like
condition [2.T) in[(Z.3), we have the following

1

3.3) ) el £ Tt e~ ol
(3.4) 1o (@) - p)]| € —om 2 (w) — plw)].

q3 2 1
1- i=1 ﬁn,i(s

k—2

@5 ) sl £ Tl — a0l
- i=1 Mnga

Finally, using the generalizeg-contractive-like conditior (2]7) i (2.3) for (k-1), we have

. B’
(3.6) |z (w) = pw)l| < ! 2L [zn(w) — p)]I-
- i=1 ﬁn,i d
Substituting[(3.8),[ (314)[ (3.5) and (B.6) respectively in|(3.2) and simplifying, we obtain
1 2
Qn.0 Bno 6n0
— < d : : : d ...
k—2 k—1
n,0 n,0
(37) [1 _ Z;]i_ll 52225@][1 - Zil ﬁi;léi]H%ﬂ(W) - p(w)H
Note that:
1 n0 L[ i’ F ang

] q1 ‘
— - = - >1-— an 0"+ ap
1-— Zg;l Oényié‘l 1— 23;1 Cknﬂ‘&l o [; ’ ’0]

hence,% <3 0,8+ ang Letd < 6 < 1, then
i=1 %n,i

q1
Z an,i(si + an,O S (1 - an,O)(s + an,O

=1
That is,

(67751
3.8 ’ - < (1 — ay0)0 + pp-
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Therefore,

|Zns1(w) — pW)]| < {(1—ano>6+anon<1—ﬁioww;m—ﬁié)éwi,o]...
(1= BED8 + BEANL — BN + BE M|z (w) — p(w)]
[1— (1 = ano)(1 = )]l za(w ) —p(w)

< H[l — (1= i) (1 = 9)][[zo(w) — p(w)]

(3.9) < e D000 gy () — plw)]|.

IN

Hence, using the fact_; (1 — o, o) = oo, thenlim,,_. ||zy41(w) — p(w)| = 0. That is, the
random implicit Kirk multistep iterative schende (R.3) converges stronghft9. This ends the
proof. g

Theorenj 3.]L leads to the following corollary:

Corollary 3.2. Let (E,|.||) be a separable Banach space dhd 2 x £ — E be a contin-
uous generalized randogtcontractive-like operator with a random fixed pojniv) € F(T')
which satisfies[(2]7) for each y € F, 0 < §(w) < 1 andy : RT — R* a continuous and
nondecreasing function with(t) > 0V ¢t € (0,00) andy(0) = 0. Let {z,,}>2 , be the random
implicit Kirk-Noor, random implicit Kirk-Ishikawa, random implicit Kirk-Mann iterations de-
fined respectively by (214), (2.5) arld (R.6). Then

(a) T defined by[(2]7) has a unique random fixed ppift).

(b)i) the random implicit Kirk-Noor iteratior] (2|4) converges stronglypta) of T';

(b)ii) the implicit random Kirk-Ishikawa iteratior (2.5) converges strongly () of T;

(byiii) the implicit random Kirk-Mann iteratior (2|6) converges stronglyta) of 7.

3.2. Stability Results in Normed Linear Spaces.

Theorem 3.3. Let (X, ||.||) be a normed linear space affid: 2 x X — X be a continu-
ous generalized random-contractive-like operator with a random fixed pojiity) € F(T)
which satisfies[(2]7) for eachy € X, 0 < §(w) < 1 andy : R* — R* a continuous and
nondecreasing function with(t) > 0V ¢t € (0,00) and¢(0) = 0. If the random implicit
Kirk-multistep iterative schemgr,, }22  defined by[(2.8) converges stronglystau) . Then the
random iterative schemg (2. 3)T‘rstable

Proof. Let {y,(w)}2, be any sequence of random variablesimnd

leten = [[ynsn (@) = anoyh’ (@) = T an T (@, gosr ()|

where

y (w) = By (W) + 0, BT (w, 20 (W), %2, B =1
s (w) = B (W) + q’“ﬁ(”TZ(w,yﬁ)( ), Y = 1,1 =1(1)k -2

o V(@) = A5 (@) + 8 BT (w0, W), T B = 1.

Supposdim,, .6, = 0, we show thatim,,..y,(w) = p(w) by using generalized random

AJMAA Vol. 15, No. 2, Art. 15, pp. 1-14, 2018 AIJMAA
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p-contractive-like conditior{ (2]7).

[yni1(@) = p@)]| < [[Yns1(w) = an oy (@ Zam (w, Y ()]

0yt (w +Zam W, Yn41(w)) = p(w)

q1
< enF [yl (@) = @)+ ol T (w, yosa (@) — p(w)]
=1
< en+ anollyl) (W) H+Zam W) [[Yn+1(w) = p(w)||
q1 % .
t i—j j (1|77
SXHAE )5 () (IT9() ~ o))
i=1 =0
= e+ anollyl (W) H+Zam w)[|Ynt1(w) — p(w)||-
Thus,
€n anO
3.10) |lyn g 7 (1)) — _
B10) [lgn) =P S T e Ty ) )]
Let )\, = ﬁ then
11—\ - 1 Qn0 o 1- 21;1 Oén,i(si(w) — Qno
T =Y b)) 1= (W)
q1
2 1— (Z Oén,i5i(W) + Oém())
=1
Therefore,
q1
(311) )\n S Zan,idi( + Qpo = Zan 1(52 Zanz =
=1
Similarly,
Bno - i W) < Z B —
gil ﬁizli(sz(w) a i=1
Bno @) s )
T S D Buid'w) < S A 1,
ﬁ 5( ) =1 =1
ﬁn,o < i 6(3)57, < Z 6(3)
1 - ;‘111 5;125%‘*)) B i=1 :
B0 = (k=1)
(3.12) o < N B (w Zﬁ

L= 38 By 8 (w) P
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We note thalﬁﬁm are measurable sequences in [0,1] for elaahd ¢, ¢; are fixed integer (for
eachl) forn = 1,2,3,... and1 < [ < k — 2. Similarly, following procedure in(3.10), we
obtain

B
3.13 yD(w) —pw)|| < L @ (w) = p(w)]I;
(3.13) 1y (w) = p(w)] - 3;62{35%)”?’ (W) = p(w)]l
(2) 6(22) (3)
3.14 2 (W) — p(w < o - B (W) — p(w);
(3.14) 1y (w) = p(w)] — 3i15§25’<w>“y (W) = pw)]]
Bt

(3.15) 1y (w) — pw)]| < [y (w) — p(w)]-

1— Q4 53)51( )

Continuing this process fdr — 1, we obtain

o Bro
(3.16) 1) = ] S T ) = )l
Observe that
WO w) —p@)l| < 152w) - p@)ll < 15 @) - p@)l < - -
3.17 1
.17 < ¥V wW) = p@)] < lyn(w) — p@)].

Substituting[(3.B) intg (3]1), we obtain

€n a/n 0

318) fonas(e) = P S s i s ) Pl

_ an.0 _
Letk = [ ST andn, =

Then, [3.18) becomes

(3.19) [Yn41(w) = p(W)]| < 0y + Ellyn(w) = p(W)]]-

Since,n, — 0 andx < 1, and from Lemma 2]4, we can conclude that
limp—oo||Yn(w) — p(w)]| = 0 OF limy— 0o yn(w) = p(w).

Conversely, supposeén,, ...||y.(w) = p(w) for F(T') # ¢, then we show thdim,, ...€, = 0.

€n = Hyn+1< )_O‘noyy(zl) Zanz W, Yn+1 w))”

< g (@) = p@)] + Ip() — anoy®(w +Zczm (Y ()
q1

< 1 (@) = P+ anollyP (@) = p@) |+ D andl T (@, gnrr (@) = T'(w, p(w))]

< llonn () =)l + anolln(@) = (o) :

< 1+zamaz )1y () - p)]

AJMAA Vol. 15, No. 2, Art. 15, pp. 1-14, 2018 AJMAA
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Since||y,(w) — p(w)|| — 0 asn — oo, thenlim,,_, €, = 0.
Therefore, the random implicit Kirk multistep iteration (2.3)745- stable. This ends the
proof. i

Theorenj 3.3 leads to the following corollary:

Corollary 3.4. Let (X, ||.||) be a normed linear space arid : ©2 x X — X be a continuous
generalized randomp-contractive-like operator with a random fixed pojritv) € F'(7") which
satisfies[(2]7) for each,y € X, 0 < §(w) < 1 andy : R" — R* a continuous and nonde-
creasing function withp(t) > 0V ¢ € (0,00) and(0) = 0. If the random implicit Kirk-Noor,
random implicit Kirk-Ishikawa, random implicit Kirk-Mann iteratiods:,, } > , defined respec-
tively by (2.4),[(2.p) and (2 6) converges strongly to the random fixed p@int Then

(i) the random iteration[(2]4) i§"— stable;

(i) the random iteration[(2]5) i9"—stable;

(iii) the random iteration[(2.6) i9"—stable.

3.3. Rate of Convergence of the Various Random-Implicit-Kirk-Type Iterative Schemes.
We compare our new implicit random Kirk multistep iterative scheme (2.3) with others defined

by (2.4), [2.5) and (2]6) using the following example.
Example 3. 1 Let £ = [0,1] andT : [0,1] — [0,1] , T(w,z(w)) = §, With zy # 0, a0 =
ﬁnO =1- f?
Q= Oy, = J=, n > 25, for eachl and forn = 1,2,3...,24, a,; = 3, = 0 for eachl. Let
p(w) = 0.

From the random implicit Kirk Mann iteration (RIKM) defined y (R.6):
xn+1<w) = an,Oxn(w) + Z;Jil an,lTl(wa Tn+1 (W))i

We have,
O )+ D 00T o )
= (1= )(e) + % M;wu%angw
=
Trt@) = (L= —=)a(@) + i1 (@) + i (@)
n+1 - \/ﬁ n \/— n+1 8\/_ n+1
1 1 8
(1- N m)wnﬂ(w) = (1- %)wn(u})
(h%)cfsm(w) - <1—%>xn<w>
W9 = L)
8\/_ n+1(W - \/ﬁ n
(3.20) xnﬂ(w):%%(w) 88\/\/_%_—694 @) = H 88\/\/__—_64 )
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Similarly, the random implicit Kirk-Ishikawa (RIKI) iteration gives
8\/_—64 8\/_—64
Also, the random implicit Kirk-Noor (RIKN) |terat|on gives
8y/n — 64, 8y/n — 64,4

Tplw w).
Finally, the random implicit Kirk-Multistep (RIKMuItl) iteration gives
8\/_—64 1o 8vn—64,,

Next, we use definition 2|3 to compare the random implicit Kirk-type iterative schemes as
follows:
Case 1:Comparison of RIKMulti and RIKN gives:

(321) Ln+1 (w) (

(3.22) o (W) = (T7=—4

(3.23) T (W) = (e

T |Tn41(RIK Multi)—p(w)| 817 —64\(k—3
Let.J = limy, .o |£3+1<R515KN> O = Lt o [T 5 (% ﬁ_g )(k=3)
= bt oo [ 1505 (1 = 5755) "™ < limn oo TT755(1 = 5)77
7 24, 25 n—1\(k—3) _

= limyoo(3 x 2 x 2 =1)(=3) — q,

Case 2:Comparison of RIKN and RIKI gives:

. Tn4+1(RIKN)—p(w
Let.J = lim,, .o ||:1: Tl((RIKI)) P(( ))|| Limy, o H] 25(8\/\[769 )(3 2)
= iMoo H] 25(1 sf 9) < limp oo HJ 25( %)

Case 3:Comparison of RIKI and RIKM gives:

E |Zn41 (RIKT)—p(w)] j
LetJ = lZmn—>oo |In++11(R[KM)—p(UJ)| llmn—wo H] 25( 8/7—9

= limy oo H;L 25<1 B 8\/5’5 9) < limn—oo HJ:25( %)
24 ., 25 ., 26 n

—lZmn_,oo(25 X % X o7 - nl) = 0.

3.4. Summary. In case 1, it is shown that the random implicit Kirk-multistep (RIKMulti) it-
eration converges faster than the random implicit Kirk-Noor (RIKN) iteration to the random
fixed pointp(w) = 0. Case 2 shows that the random implicit Kirk-Noor (RIKN) iteration con-
verges faster than the random implicit Kirk-Ishikawa (RIKI) iteration to the random fixed point
p(w) = 0, while in case 3, the random implicit Kirk-Ishikawa (RIKI) iteration converges faster
than the random implicit Kirk-Mann (RIKM) iteration to the random fixed pgifit) = 0.

4. CONCLUSION.

We have shown the convergence of random implicit kirk-multistep iteration to the unique
random fixed point for generalized contractive-like random operator defined in a separable Ba-
nach space. We also proved stability results of this scheme in a normed linear space. It was
also demonstrated through example, that our new scheme perform better than other random
implicit iterations considered in this work in terms of convergence. Thus, the schemes have
good potentials for further applications in equilibrium problems in computer science, physics
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and economics.

5. ABBREVIATIONS .

RIKM represents random implicit Kirk Mann iteration, RIKI represents random implicit
Kirk-Ishikawa iteration, RIKN represents random implicit Kirk-Noor iteration, RIKMulti rep-
resents random implicit Kirk-multistep iteration.
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