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ABSTRACT. We deal with the well-known Fuglede-Putnam theorem and related FP-property.
We show that if(A,B) has the FP-property, then so has(Ã(1,t1), B̃(1,t2)) where0 ≤ t1, t2 ≤
1 are arbitrary. We first prove that̃A(1,t1)X = XB̃(1,t2) if and only if AX = XB for all

X, whenever(A,B) has the FP-property. We prove some similar results for(Ã(∗)
(1,t1)

, B̃
(∗)
(1,t2)

)

instead of(Ã(1,t1), B̃(1,t2)) as well. Also we introduce the sequence of generalized iterations
of Aluthge transform of operators and express some results for this notion associated to the
FP-property.

Key words and phrases:Aluthgeh transform, Polar decomposition, Self-commutator, Positive semidefinite, Fuglede–
Putnam’s theorem.

2000Mathematics Subject Classification.Primary 32A70, Secondary 46E99, 47B47, 47B99.

ISSN (electronic): 1449-5910

c© 2018 Austral Internet Publishing. All rights reserved.

http://ajmaa.org/
mailto:<manzar.maleki@gmail.com>
mailto:<ajanfada@birjand.ac.ir>
mailto:<sadegh.nabavi@hsu.ac.ir>
http://www.ams.org/msc/


2 MANZAR MALEKI , ALI REZA JANFADA AND SEYED MOHAMMAD SADEGH NABAVI SALES

1. I NTRODUCTION AND PRELIMINARIES

Let B(H,K) be the algebra of all bounded linear operators between complex Hilbert spaces
H andK and letB(H) denoteB(H,H). A subspaceM ⊆ H is said to be a reducing subspace
of A ∈ B(H) if AM ⊆ M andA∗M ⊆ M . Evidently In the case whenH is finite dimensional
we could identifyB(H) andMn(C), the space of alln × n complex matrices. A matrixA
is called positive semidefinite whenA ≥ 0 where≥ is the well-known Heinz–Löwner order.
We writeA > 0, to meanA is invertible and positive semidefinite. In this case we say thatA
is positive definite. ForA ∈ Mn(C) there is a unitary matrixU and a positive semidefinite
matrixP such thatA = UP . The right hand side of this equality is called polar decomposition
of A. Note that the positive partP is uniquely determined byP = |A| = (A∗A)

1
2 . WhenA

is invertible,U = AP−1 is also unique. Polar decomposition for operators similar to that of
matrices exists. The difference is that the operatorU in A = U |A| is a partial isometry. For
everyr ≥ t ≥ 0, the generalized(r, t)-Aluthge transformÃ(r,t) of A is defined by

Ã(r,t) = |A|tU |A|r−t,

wheneverA = U |A| is a polar decomposition and the generalized∗-Aluthge transformÃ
(∗)
(r,t) of

A is defined by

Ã
(∗)
(r,t) = |A∗|tU |A∗|r−t.

If r = 1 andt = 1
2
, thenÃ(r,t) is denoted byÃ and is called the Aluthge transform ofA.

We notify here that this notion was firstly introduced by Aluthge in [1] during the review
of properties ofp-hyponormal operators, and today it has been become a powerful tool in the
operator theory. An operatorA ∈ B(H) is normal if A∗A = AA∗ and isp-hyponormal, for
some0 < p ≤ 1, if |A|2p ≥ |A∗|2p.

Let A ∈ B(H) andB ∈ B(K). A pair (A, B) is said to have the Fuglede-Putnam property if
AX = XB impliesA∗X = XB∗.

The famous Fuglede-Putnam theorem, see [2], asserts that ifA andB are normal operators,
then(A, B) has FP-property. There exist many generalization of this theorem which most of
them go into relaxing the normality ofA andB, see [7]. The next lemma is concerned with the
Fuglede-Putnam theorem and we need it in the future.

Lemma 1.1. [7] LetA ∈ B(H) andB ∈ B(K). Then the following assertions equivalent.

(i) The pair(A, B) has the Fuglede-Putnam property.
(ii) If AX = XB, thenR(X) reducesA, ker(X)⊥ reducesB andA|R(X), B|ker(X)⊥ are

unitarily equivalent normal operators.

In this paper we look for the response of the following question; under what conditions on
engaged operators, any one ofAX = XB, Ã(∗)

(r,t1)X = XB̃
(∗)
(r,t2) andÃ(r,t1)X = XB̃(r,t2) implies

the other ones. Another problem, considered in this paper, relates to relationships between pairs
(A, B), (Ã

(∗)
(r,t1), B̃

(∗)
(r,t2)) and (Ã(r,t1), B̃(r,t2)), through FP-property. In fact it is probed when

does the FP-property for any one of which yield that for others. These problems were firstly
raised in [5] forÃ andB̃ instead ofÃ(∗)

(r,t), B̃
(∗)
(r,t), Ã(r,t) andB̃(r,t). In [6] the author continued

this conclusion in that article. This article is in fact a continuation of [3, 5, 6]. We consider a
vary general case in the sense that we have allowed indices in two sides to be freely chosen in
interval[0, 1]. We also introduce the sequence of generalized iterations of Aluthge transform of
operators and express some result for that, associated to the problem stated above.
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2. FUGLEDE -PUTNAM TYPE THEOREMS AND ALUTHGE TYPES TRANSFORMS

In this section we speak some on well-known Fuglede-Putnam theorem. We mainly interested
in relationship between pair(A, B) of operators and pairs(Ã(∗)

(r,t1), B̃
(∗)
(r,t2)) and(Ã(r,t1), B̃(r,t2)),

for appropriate parametersr, t1, t2, of their associated Aluthge transforms through this theorem.
We start with the following theorem in which we generalize some results of [5]. The proof is
exactly the same. Its elementary proof is dropped.

Theorem 2.1. Let A and B be two invertible operators with the polar decompositionsA =
U |A| andB = V |B| such that(A, B) has the FP-property and letr, t1 andt2 be some positive
numbers with1 ≥ t1 ≥ 0 and1 ≥ t2 ≥ 0. The following assertions hold

(i) if X is an operator withAX = XB, then|A|rX = X|B|r, |A∗|rX = X|B∗|r, UX =
XV , U∗X = XV ∗ and;

(ii) if X is an operator such that̃A(1,t1)X = XB̃(1,t2), thenÃ∗
(1,1−t1)X = XB̃∗

(1,1−t2).

(iii) if X is an operator such that̃A(∗)
(1,t1)X = XB̃

(∗)
(1,t2), then(Ã

(∗)
(1,1−t1))

∗X = X(B̃
(∗)
(1,1−t2))

∗.

Remark 2.1. For invertible operatorsA andB if (A, B) has FP- property, then so are(Ã, B̃) and
(Ã(∗), B̃(∗)). Note that the method used in this theorem for concluding the FP-property of(Ã, B̃)

from that of(A, B), is not effective for the pair(Ã(r,t), B̃(r,t)) or (Ã
(∗)
(r,t), B̃

(∗)
(r,t)). Fortunately this

conclusion is valid and will be proved in the sequel , in another method even in more general
case(Theorem 2.6 below).

Proposition 2.2. SupposeA andB are invertible operators. The pair(Ã(∗), B̃(∗)) has the FP-
property if and only if so does(Ã, B̃).

Proof. In theorem 2.4 of [5], it is shown that the FP-property for(Ã, B̃) is equivalent to the
following requirement

U2X = XV 2(2.1)

for all X with AX = XB. Thus we have to just show that the FP-property for(Ã(∗), B̃(∗))
is equivalent to (2.1) which is done in the similar method as theorem 2.4 of [5] and stating of
which is somehow redundant.

Now, we present some results concerning a problem which is closely related to Fuglede-
Putnam-Aluthge problem discussed in [4].

Theorem 2.3.Let r > t > 0 andA ∈ B(H) andB ∈ B(K) and let the pair(A, B) has the FP
property. ThenAX = XB implies

(i) Ã(r,t1)X = XB̃(r,t2);

(ii) Ã∗
(r,t1)X = XB̃∗

(r,t2);

(iii) Ã
(∗)
(r,t1)X = XB̃

(∗)
(r,t2);

(iv) (Ã
(∗)
(r,t1))

∗X = X(B̃
(∗)
(r,t2))

∗.

Proof. Firstly we note thatAX = XB and the fact that(A, B) has the FP-property ensure
A′X = XB′ whereA′ = U |A|r andB′ = V |B|r by using a routine application of functional
calculus. Since(A, B) has FP-property andAX = XB by Lemma 1.1 we have thatR(X)
reducesA, ker(X)⊥ reducesB andA|R(X), B|ker(X)⊥ are unitarily equivalent normal operators.
Let

A = N ⊕ T on H = R(X)⊕R(X)⊥
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and
B = M ⊕ S on K = ker(X)⊥ ⊕ ker(X),

whereN andM are unitarily equivalent normal operators. LetN = U1|N | andM = V1|M |
be the polar decomposition. ThusN ′ = U1|N |r andM ′ = V1|M |r are the polar decomposition
andN ′ andM ′ are normal operators and

A′ = N ′ ⊕ T ′ on H = R(X)⊕R(X)⊥

and
B′ = M ′ ⊕ S ′ on K = ker(X)⊥ ⊕ ker(X),

Let

X =

[
X1 0
0 0

]
with respect toH = R(X)⊕R(X)⊥ andK = ker(X)⊥⊕ ker(X). FromA′X = XB′ we can
conclude

N ′X1 = X1M
′.

On the other hand we have that

Ã(r,t1)X = Ã′
(1,

t1
r

)X =

[
N ′X1 0
0 0

]
and

XB̃(r,t2) = XB̃′
(1,

t2
r

) =

[
X1M

′ 0
0 0

]
which by (2.2) establish (i). The items (ii),(iii) and (iv) are accomplished similar to (i).

In the following lemma we generalized theorem 4.2 of [5]. The proof used in [5] works good
enough for that of ours and we state it for the sake of completeness.

Lemma 2.4. Let 0 < t1, t2 ≤ 1 and letA ∈ B(H) be invertible andB ∈ B(K) be arbitrary
operators and let the pair(A, B) has the Fuglede-Putnam property. If any one of

(i) Ã(1,t1)X = XB̃(1,t2) and

(ii) Ã
(∗)
(1,t1)X = XB̃

(∗)
(1,t2)

takes place, thenAX = XB.

Proof. Assume (i) and letÃ(1,t1)X = XB̃(1,t2). Let A = U |A| andB = V |B| be the polar
decomposition ofA andB, respectively. LetÃ(1,t1)X = XB̃(1,t2) and letW = |A|−t1X|B|t2.
SinceÃ(1,t1)X = XB̃(1,t2), we have

|A|−t1Ã(1,t1)X|B|t2 = |A|−t1XB̃(1,t2)|B|t2

|A|−t1|A|t1U |A|1−t1X|B|t2 = |A|−t1X|B|t2V |B|1−t2|B|t2

U |A|(|A|−t1X|B|t2) = (|A|−t1X|B|t2)V |B|,
so

AW = WB.

Hence by hypothesis and Lemma 1.1,R(W ) reducesA, ker(W )⊥ reducesB and A|R(W ),
B|ker(W )⊥ are normal operators. Therefore

A = N ⊕ T on H = R(W )⊕R(W )⊥
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and
B = M ⊕ S on K = ker(W )⊥ ⊕ ker(W ),

whereN andM are unitarily equivalent normal operators. SinceA is invertible then so areN
andT . Also, sinceN andM are unitarily equivalent,M is invertible. Let

X =

[
X11 X12

X21 X22

]
andW =

[
W1 0
0 0

]
with respect toH = R(W ) ⊕ R(W )⊥ and K = ker(W )⊥ ⊕ ker(W ). Clearly |A|−1 =
|N |−1 ⊕ |T |−1. It follows from W = |A|−t1X|B|t2 that[

W1 0
0 0

]
=

[
|N |−t1X11|M |t2 |N |−t1X12|S|t2
|T |−t1X21|M |t2 |T |−t1X22|S|t2

]
.

HenceX12|S|t2 = 0, X12 = 0, X22|S|t2 = 0. SoX21S̃(1,t2) = 0 andX22S̃(1,t2) = 0. Then
Ã(1,t1)X = XB̃(1,t2) implies that[

NX11 NX12

0 T̃(1,t1)X22

]
=

[
X11M 0
0 0

]
.

HenceX12 = 0 andX22 = 0. SinceÃ(1,t1) = N ⊕ T̃(1,t1) and B̃(1,t2) = M ⊕ S̃(1,t2) and
Ã(1,t1)X = XB̃(1,t2) andX = X11 ⊕ 0, we haveNX11 = X11M and this, in turn, implies that
AX = XB.
In other case the proof is similar and omitted.

The following theorem is concluded easily from the Lemma 2.4 and Theorem 2.3

Theorem 2.5. Let 0 ≤ t1, t2 ≤ 1. Let A ∈ B(H) and B ∈ B(K) be invertible operators
and let the pair(A, B) have the Fuglede-Putnam property. Then the following assertions are
equivalent

(i) Ã(1,t1)X = XB̃(1,t2);

(ii) Ã
(∗)
(1,t1)X = XB̃

(∗)
(1,t2);

(iii) AX = XB.

Now we show that the FP-property is spread from the tuple(A, B) to tuples(Ã(1,t1), B̃(1,t2))

and(Ã
(∗)
(1,t1), B̃

(∗)
(1,t2)). Note that the indices have been chosen so much freely.

Theorem 2.6.LetA andB be two invertible operators. If(A, B) has the FP- property, then so
have(Ã(1,t1), B̃(1,t2)) and(Ã

(∗)
(1,t1), B̃

(∗)
(1,t2)) for all 0 < t1, t2 ≤ 1.

Proof. Let Ã(1,t1)X = XB̃(1,t2) for someX. ThenAX = XB by the previous theorem. So
Ã(1,t1)W = WB̃(1,t2) whereW = |A|t1X|B|−t2. Again the previous theorem implies that
AW = WB thereforeA∗W = WB∗ by FP-property of(A, B). Hence

|A|U∗|A|t1X|B|−t2 = |A|t1X|B|−t2|B|V ∗

which isÃ∗
(1,t1)X = XB̃∗

(1,t2).

The FP- property for the pair(Ã(∗)
(1,t1), B̃

(∗)
(1,t2)) could be proved in the similar way.

Remark 2.2. Here we draw the reader’s attention to the indices of generalized Aluthge trans-
forms in tow sides of all equalities in Theorems 2.1 and 2.4 and Corollary 2.6 which are differ-
ent.
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Problem 1. When does(Ã(r,t1), B̃(r,t2)) have the FP-property, where0 ≤ t1, t2 ≤ r

Definition 2.1. Let α̂ = {αn} be a sequence in interval[0, 1]. The sequence of generalized
iterations of Aluthge transform of operatorA is defined inductively by

∆
cα1(A) = ∆α1(A) = Ã(1,α1)

and
∆
cαi

(A) = ∆αi
(∆

dαi−1
(A))

for i ≥ 2.

The sequence of generalized iterations of∗-Aluthge transform of operatorA, denoted by
∆

(∗)
cαi

(A), is defined similarly.

Corollary 2.7. Let A andB be two invertible operators. If(A, B) has the FP- property, then
so have(∆

cαi
(A), ∆

bβi
(B)) and(∆

(∗)
cαi

(A), ∆
(∗)
bβi

(B)) for all sequences{αn} and{βn} in [0, 1].

Corollary 2.8. LetA andB be two invertible operators andX be an arbitrary operator and let
sequences{αn} and{βn} be two sequences in[0, 1]. If (A, B) has the FP- property and either
∆
cαi

(A)X = X∆
bβi
(B) or ∆

(∗)
cαi

(A)X = X∆
(∗)
bβi

(B), thenAX = XB.

Proof. We prove that∆
cαi

(A)X = X∆
bβi
(B) impliesAX = XB. The other is done similarly.

By Corollary 2.7 we have that(∆
dαi−1

(A), ∆
dβi−1

(B)) has the FP-property which by∆
cαi

(A)X =

X∆
bβi
(B) and using Lemma 2.4 we reach to∆

dαi−1
(A)X = X∆

dβi−1
(B). Going on in this

process we could proveAX = XB.
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