

The Australian Journal of Mathematical Analysis and Applications

AJMAA

A SUBORDINATION THEOREM FOR ANALYTIC FUNCTIONS

MARJONO

Received 4 November, 2016; accepted 25 January, 2017; published 20 February, 2017.

DEPARTMENT OF MATHEMATICS, FACULTY OF MATHEMATICS AND NATURAL SCIENCES, UNIVERSITY OF BRAWIJAYA, JL. VETERAN MALANG 65145, INDONESIA.,

marjono@ub.ac.id
URL: http://matematika.ub.ac.id

ABSTRACT. It is shown that if f is analytic in $D=\{z:|z|<1\}$, with f(0)=f'(0)-1=0, then for $\alpha>0,\ \gamma>0,\ f'(z)\Big(\frac{f(z)}{z}\Big)^{\alpha-1}\prec\Big(\frac{1+z}{1-z}\Big)^{\beta(\gamma)}$ implies $\Big(\frac{f(z)}{z}\Big)^{\alpha}\prec\Big(\frac{1+z}{1-z}\Big)^{\gamma}$, where $\beta(\gamma)=\gamma+\frac{2}{\pi}\arctan\Big(\frac{\gamma}{\alpha}\Big)$, and that $\beta(\gamma)$ is the largest number such that this implication holds.

Key words and phrases: Analytic function, Univalent function, Bazilevič function, Subordination.

2010 Mathematics Subject Classification. Primary 30C45. Secondary 30C50.

ISSN (electronic): 1449-5910

^{© 2017} Austral Internet Publishing. All rights reserved.

2 MARJONO

1. Introduction and Definitions

Let S be the class of analytic normalised univalent functions f, defined in $z \in D = \{z: |z| < 1\}$ and given by

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n.$$

The Bazilevič functions with logarithmic growth $B_1(\alpha) \subset S$ defined as follows have been extensively studied (see e.g. [2, 3, 4]).

Suppose that f is analytic in D and is given by (1.1). Then for $\alpha \geq 0$, $f \in B_1(\alpha)$, if and only if,

(1.2)
$$Re \ f'(z) \left(\frac{f(z)}{z}\right)^{\alpha - 1} > 0.$$

We say that an analytic function f is subordinate to an analytic function g, and write $f(z) \prec g(z)$, if and only if there exists a function ω , analytic in D, such that $\omega(0) = 0$, $|\omega(z)| < 1$ for $z \in D$, and $f(z) = g(\omega(z))$. Marjono and Thomas [5] discussed subordination in a sector.

We will use the following well-known lemma.

2. LEMMA

The Miller-Mocanu Lemma [1]

Let F be analytic in D and G be analytic univalent in \overline{D} , with F(0) = G(0). If $F \not\prec G$, then there is a point $z_0 \in D$ and $\zeta_0 \in \partial D$, such that $F(|z| < |z_0|) \subset G(D)$, $F(z_0) = G(\zeta_0)$ and $z_0F'(z_0) = k\zeta_0G'(\zeta_0)$ for $k \ge 1$.

We prove the following theorem for analytic functions, noting its relationship with the Bazilevič functions $B_1(\alpha)$ defined in (1.2).

3. THEOREM

Let f be analytic in D, with f(0) = f'(0) - 1 = 0. Then for $\alpha > 0$, $\gamma > 0$ and $z \in D$,

$$f'(z) \left(\frac{f(z)}{z}\right)^{\alpha-1} \prec \left(\frac{1+z}{1-z}\right)^{\beta(\gamma)}$$

implies

(3.1)
$$\left(\frac{f(z)}{z}\right)^{\alpha} \prec \left(\frac{1+z}{1-z}\right)^{\gamma},$$

where

(3.2)
$$\beta(\gamma) = \gamma + \frac{2}{\pi} \arctan\left(\frac{\gamma}{\alpha}\right).$$

Furthermore $\beta(\gamma)$ is the largest number such that (3.1) holds.

Proof. Write

$$p(z) = \left(\frac{f(z)}{z}\right)^{\alpha},$$

so that p is analytic in D, p(0) = 1 and

$$p(z) + \frac{zp'(z)}{\alpha} = \left(\frac{f(z)}{z}\right)^{\alpha-1} f'(z).$$

Thus we need to show that

$$p(z) + \frac{zp'(z)}{\alpha} \prec \left(\frac{1+z}{1-z}\right)^{\beta}$$

implies

$$p(z) \prec \left(\frac{1+z}{1-z}\right)^{\gamma}$$

when $\beta = \beta(\gamma)$ is given by (3.2).

For $z \in D$, let $h(z) = [(1+z)/(1-z)]^{\beta}$ and $q(z) = [(1+z)/(1-z)]^{\gamma}$, so that $|\arg h(z)| < \frac{\beta\pi}{2}$ and $|\arg q(z)| < \frac{\gamma\pi}{2}$.

Suppose that $p \not\prec q$. Then from the Miller-Mocanu Lemma, there exists $z_0 \in D$ and $\zeta_0 \in \partial D$, such that $p(z_0) = q(\zeta_0)$, $p(|z| < |z_0|) \subset q(D)$ and $z_0 p'(z_0) = k\zeta_0 q'(\zeta_0)$, for $k \ge 1$.

Since $p(z_0)=q(\zeta_0)\neq 0$, it follows that $\zeta_0\neq \pm 1$. Thus we can write $ri=\frac{1+\zeta_0}{1-\zeta_0}$ for $r\neq 0$. Hence

$$p(z_0) + \frac{z_0 p'(z_0)}{\alpha} = q(\zeta_0) + \frac{k\zeta_0 q'(\zeta_0)}{\alpha}$$

for $k \geq 1$.

Differentiating q(z) we obtain

$$p(z_0) + \frac{z_0 p'(z_0)}{\alpha} = \left(ri - \frac{k\gamma(1+r^2)}{2\alpha}\right) (ri)^{\gamma-1}$$

$$= \left(ri - \frac{k\gamma(1+r^2)}{2\alpha}\right) r^{\gamma-1} \left(\cos\frac{(\gamma-1)\pi}{2} + i\sin\frac{(\gamma-1)\pi}{2}\right).$$

4 MARJONO

Since
$$\cos\frac{(\gamma-1)\pi}{2}=\sin\frac{\gamma\pi}{2}$$
, and $\sin\frac{(\gamma-1)\pi}{2}=-\cos\frac{\gamma\pi}{2}$, we have (3.3)

$$p(z_0) + \frac{z_0 p'(z_0)}{\alpha} = \left(ri - \frac{k\gamma(1+r^2)}{2\alpha}\right) r^{\gamma-1} \left(\sin\frac{\gamma\pi}{2} - i\cos\frac{\gamma\pi}{2}\right)$$
$$= \frac{r^{\gamma-1}}{2}\cos\frac{\gamma\pi}{2} \left[2r - \frac{k\gamma}{\alpha}(1+r^2)\tan\frac{\gamma\pi}{2} + i\left(2r\tan\frac{\gamma\pi}{2} + \frac{k\gamma}{\alpha}(1+r^2)\right)\right],$$

and so taking arguments in (3.3), we obtain

$$\arg\left(p(z_0) + \frac{z_0 p'(z_0)}{\alpha}\right) = \arctan\left[\left(2r\tan\frac{\gamma\pi}{2} + \frac{k\gamma}{\alpha}(1+r^2)\right) / \left(2r - \frac{k\gamma}{\alpha}(1+r^2)\tan\frac{\gamma\pi}{2}\right)\right]$$

$$\geq \arctan\left[\left(2r\tan\frac{\gamma\pi}{2} + \frac{\gamma}{\alpha}(1+r^2)\right) / \left(2r - \frac{\gamma}{\alpha}(1+r^2)\tan\frac{\gamma\pi}{2}\right)\right]$$

$$:= \Phi(r).$$

Now write $\Phi(r) = \arctan\left(\frac{U(r)}{V(r)}\right)$, so that $U(r) = 2r\tan\frac{\gamma\pi}{2} + \frac{\gamma}{\alpha}(1+r^2)$ and $V(r) = 2r - \frac{\gamma}{\alpha}(1+r^2)\tan\frac{\gamma\pi}{2}$.

Next note that since $\Phi'(r)(U(r)^2+V(r)^2)=V(r)U'(r)-U(r)V'(r)$, it follows that V(r)U'(r)-U(r)V'(r)=0 when r=1. Thus $\Phi(r)$ attains its minimum when r=1, and so

$$\begin{split} \Phi(r) &\geq \Phi(1) \\ &= \arctan\left[(\alpha \tan \frac{\gamma \pi}{2} + \gamma) / (\alpha - \gamma \tan \frac{\gamma \pi}{2}) \right] \\ &= \frac{\beta(\gamma) \pi}{2}. \end{split}$$

Hence

$$\frac{\beta(\gamma)\pi}{2} \le \arg\left(p(z_0) + \frac{z_0 p'(z_0)}{\alpha}\right) \le \frac{\pi}{2},$$

which contradicts the fact that $|h(z)| < \frac{\beta(\gamma)\pi}{2}$, provided (3.1) holds. This completes the proof of the positive statement in the theorem.

To show that (3.2) is the largest number such that (3.1) holds, let

$$p(z) = \left(\frac{1+z}{1-z}\right)^{\gamma}.$$

Then from the minimum modulus principle for harmonic functions, it follows that

$$\inf_{|z|<1} \arg\left(p(z) + \frac{zp'(z)}{\alpha}\right)$$

is attained at some point $z = e^{i\theta}$, for $0 < \theta < 2\pi$.

Thus with $z = e^{i\theta}$,

$$\left(p(z) + \frac{zp'(z)}{\alpha}\right) / \left(\frac{\sin\theta}{1 - \cos\theta}\right)^{\gamma - 1} = \frac{\cos\frac{\gamma\pi}{2}}{1 - \cos\theta} \left[\sin\theta - \frac{\gamma}{\alpha}\arctan\frac{\gamma\pi}{2} + i\left(\sin\theta\tan\frac{\gamma\pi}{2} + \frac{\gamma}{\alpha}\right)\right].$$

Taking arguments we have

$$\arg\left(p(z) + \frac{zp'(z)}{\alpha}\right) = \arctan\left[\left(\alpha\sin\theta\tan\frac{\gamma\pi}{2} + \gamma\right)/(\alpha\sin\theta - \gamma\tan\frac{\gamma\pi}{2})\right],$$

and an elementary calculation shows that the minimum value of the right-hand side is obtained when $\sin \theta = 1$.

Thus

$$\arg\left(p(z) + \frac{zp'(z)}{\alpha}\right) \ge \arctan\left[\left(\alpha \tan \frac{\gamma \pi}{2} + \gamma\right) / (\alpha - \gamma \tan \frac{\gamma \pi}{2})\right]$$
$$= \frac{\beta(\gamma)\pi}{2}.$$

Hence $\beta(\gamma)$ is exact and the proof of the theorem is complete.

REFERENCES

- [1] S. S. MILLER and P. T. MOCANU, Differential Subordination and Univalent Functions, *Michigan Math. Jnl.*, **28** (1981), pp. 157–171.
- [2] R. SINGH, On Bazilevič, Functions, *Proc, Amer. Math. Soc.*, **38**, no. 2 (1973), pp. 261–271.
- [3] D. K. THOMAS, On a Subclass of Bazilevič, functions, *Int. J. Math. & Math. Sci.*, **8**, no. 4 (1985), pp. 779–783.
- [4] D. K. THOMAS, *In New Trends in Geometric Function Theory and Applications*, (World Scientific, 1991), pp. 146–158.
- [5] MARJONO and D. K. THOMAS, Subordination on δ -Convex Functions in a Sector, *Honam Mathematical J.*, **23**, no. 1 (2001), pp. 41-50.

AJMAA, Vol. 14, No. 1, Art. 2, pp. 1-5, 2017