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2 SANJA VAROSANEC

1. INTRODUCTION

Twenty years ago a unified treatment of several inequalities related to moments of distribution
was given in papers [4] andl[5]. Precisely, the following theorem was proved:

Theorem 1.1.Let f : [a,b] — R, b € (a, 0|, be a non-negative non-decreasing function. Let
pi (i=1,...,n)be positive real numbers such tha};"_, pi =1.1fa; (i=1,...,n)arereal
numbers such that; > —1%, then

b n oo b o
(1.1) / gt f(p)de > Hzlziagz"‘;) H (/ waipif(w)da:)
a =1 """ i=1 a

provided that all integrals exist. H = 0 and f is non-increasing, then the reverse inequality in

(1.7) holds.

This theorem generalizes some results from the famous book "Problems and Theorems in
Analysis" by Pélya and Szeg6. Also, as a consequence of it, the Gauss-Winckler inequality is
arised :

((s + Dm)Ys < ((r+ 1)ym)Y", s<r

wherem, = f0°° z, f IS a non-negative continuous non-increasing functiori0ono)
such that/* f dx = 1 For particular valuess = 2, » = 4 this inequality was given by
Gauss as an mequallty between the second and the fourth moments. Nowadays inequalities
similar to (1.]) are called inequalities of Gauss-Pdlya type. In this paper we giamalogue
of Theorenj 1.11 and apply it for getting new results for ghgamma and-beta functions.

We use notation and definitions from the book [2] and the arli¢le [1]4let0, 1) be a fixed
real number. The-derivativeD, f(x) of a functionf at pointz is a quotient

D,fl) = 1=

D, is a linear operator. The definiteintegral of a functionf : [0,¢) — R, ¢ € (0,00] is

defined as , .
|t = 0= 3 o (e
k=0

for b € (0, ¢), provided that the series on the right-hand side converges. This kind of integral
was defined by F.H. Jackson at the beginning of the XXth century and very often itis called the
Jackson integral. If we are interested only on integ"fadlhen the interval0, ¢) as a domain of
a functionf can be substituted with a & = {¢"b : n € No} U {0}.

The g-analogu€al, of a real numbeu is defined by

1—q°
[a]q - 1— q :
If t € R, thenD, 2! = [t],2'~*. Formula for integration by parts is based on ghanalogue

of the Leibniz ruleD,(f(z)g(z)) = f(z)Dyg(z) + g(qz) D, f(z) and it has a form

b
a2 [ @D / 9(a) D, f(x)dyz = F(B)a(b) — lim (Jg)(4™).

The structure of this paper is the following: after these introductory section we give-two
Gauss-Pdlya inequalities. In the third section log-convexity of some functions is discussed and
several general inequalities are given. The last section is devoted to applicatigrgaimma
andg-beta functions.
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2. THE ¢-GAUSS-POLYA INEQUALITIES

Before the main result let us give the weighted Hoélder inequalityfimtegral which is one
of main tools using in the proof of the main theorem.

Proposition 2.1. (The weighted Holder inequality farintegral.) Letp; (i = 1,...,n) be
positive real numbers such thgj" L — 1. Letw, f; : ']I‘b — R be non-negative functions

such that integral#ob filz) - fu(@)w(z)dye, fo [P (2)w(z)dge, (i =1,...,n) exist. Then
2.1) /f1 dx<H(/fp’ )d:v)i.
Proof. The proof is based on the following discrete Holder inequality;; Ifi = 1,...,n) are

positive real numbers such thed;", -~ = 1 and(wy)y, (fi)x (i =1,...,n) are non-negative
sequences such that subnge. j wi f5, > re o Wk fik - - - for a@re finite, then

(2.2) Zwkflk ok < H <Z wkfflé) -
k=0 i=1 k=0
It is a consequence of more general results givenlin [3, p.135, p.143]. Putting|in (2.2):

wy, = ¢*w(bg®), fi = fi(bd"), (i=1,...,n)
and multiplying with(1 — ¢)b we get

(1-q) qu w(bg®) f1(bg") .. fa(bd") <[] ( (1- q)qu’“w(bq’“)ff"(bq’“)> Z
k=0

1=1 k=0

which is equivalent tq (2|1

The first theorem is devoted to a functigrwhich ¢-derivative has one sign diy,, while in
the second theorem we deal with a functibwhich the secong-derivative is non-positive.

Theorem 2.2.Let f : T, — R be a non-negative function,> 0. Letp; (i = 1,...,n) be
positive real numbers such that ", pi = land leta; (i = 1,...,n) be real numbers such

thata,; > —}%.
If g-derivativeD, f > 0 onT,, then

n

b 1 pz p%‘
2. ai1+-+an > H’L l[aZpZ + / sz d
@) [ g > et A ! v

=1

provided that all above-mentioned integrals exist.
If D,f < 0onT,, then the reverse inequality in (2.3) holds.

Proof. Suppose thab,f > 0. The inequality[(2.3) reduces to an equality o= 0 and thus
we may, without loss of generality, assume tlfigt) > 0. SinceD,(z**!) = [a],z* applying
integration by parts we conclude

n b b
1+Zai] [ @ = [ Dyt fadye
i=1 q 0 0
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b
— f(b)bal-&-m-&-an—i-l / (qx)a1-i-~-~-i—an-&-1l)qf(x)dqaj

ajpitl

_ f(b ba1+ Fan+1 / H qx pi D f )

1/pi
> f(b)bal+ Fan+1 H (/ (qx)aipiHqu(:E)dq:E) )
0

i=1

where in the last inequality we use thaveighted Holder inequality (2.1) with a non-negative
aipit+1

weight D, f (x) and functionsf;(z) = (qz) » , (i=1,...,n).
Let us consider the Popoviciu inequality [3, p. 118]:

Zwyaﬂ n = H(ijaﬁ)l/pi,
i=1 j=1
wherew1 >0 wg,...,wm < 0,a; > Oforj 1,....m,i =1,...,n,p; > 0such that
D ity —landZ] ywiah; > 0fori=1,.
Set:

a;pi+l

m =2, U}lzf(b)>0, wy=—1, a;; =b 7

b 1/pi
Q9 = (/ (qa:)aipi“qu(a:)dqa:) fori=1,...,n
0

Using the Popoviciu inequality and integration by parts we obtain

n 1/pi

Fop ot ] (/Ob(qx)aimeqf(I)dqx)

i=1

v

b 1/pi
H < b)p it — /0 (qx)“"piHqu(:r)dqx)

n
=1
n

_ H( aipi + /O " g f(:c)dqa:)

i=1

1/pi

and so,[(23) is proven.

If D,f < 0, then the first inequality is obtained by applying the Holder inequality with the
non-negative weight'(z) = —D, f(x) > 0, and the second inequality is obtained by applying
the Holder inequality for discrete case instead of the Popoviciu inequality and the proof is
similar to the previous ona

Theorem 2.3.Let f : T; — R be a non-negative function such thlagf < 0. Letp;, (i =

1,...,n) be positive real numbers such that’’ | pi = 1l and leta; ( = 1,...,n) be real
numbers such that; > ——
If fo P f(x)d,z, (i = 1 ,n) exist, then
1 1 L 1
+ 2]¢ [aipi + 1]¢° - b
$a1+ “+an x d T > H [ 1pz (7 / zpz d €T .
/0 f@)d, T R24a e Fan [1+a1+ 4 anlq 11
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Proof. Using the inequality between the geometric mean and the arithmetic mean and then
integration by parts twice, we get

n 1 1 n 1 i
[T fo+ 2+ 05 TL( [ o so1ae)
0

i=1 =1

1
<Z laipi + 2o azpﬁl]q/ w P f (x)dgx
0

1
- Z o+ 2 (100) = [ (oo D )
0
- 1 o)
24 =r0)) —lapi+2l, Z . bt <D ) - / (qu)“ " 2D f (w)dqx) :
i=1 1
Using a definition ofa;p; + 2], and mequahty between the geometric mean and the arithmetic
mean we get

n

n _ 4ipit2
Zl'[aipi‘l‘Q]q = 11—q"P 1_q<z__z qlpﬁ?)

=1 Pt i=1 Di 1— q Di

— 1 (1 _ q2+a1+--~+an)

1—gq

[\
—_
| | —
i
VR
—_
|
—e
<
8
3®
|+
(V)
v
|

=[24a+- -+ anq
So, [2.4) is less than or equal to the following

- _— 1
DR+ ady = Dof (g = + / - (
=1 ;
1
q

q
< IR+ Y @]y — D (1)g R 4 /

i=1

ﬁ(qzx)aiﬁ> D2 f(x)da

1
= [2 +a;+--+ an]q[l +ay+---+ an]q/ $a1+"'+a"f(:€)dq:€,
0

where in the first inequality we again use the inequality between the geometric mean and the
arithmetic mean and in the last line we use integration by parts.

3. LOG-CONVEXITY AND CONSEQUENCES

In this section we consider functions,., /' andG defined as

b
r|—>mr:/ " f(x)dyx
0

F(r)=[r+1],m, =[r+ 1]q/0 " f(x)d,x
and .
G(r) = [r + 2yl + ymy = [+ 2)fr + 1], /O o f(2)dyz.
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By I we denote a domain of definition of these functions. Under certain assumptions these
functions are log-convex or log-concave and since that, several inequalities hold for them.

Theorem 3.1.a) If f is non-negative off,, then the functiomn,. is log-convex.

b) If f is non-negative such thab,f < 0 on T,, then the functiorn' is log-convex. If
D,f >0, thenF is a log-concave function.

c) If f is non-negative such thﬂgf < 0 onTy, then the functiord- is log-concave.

Proof. (a) LetA € (0,1), 1, € I. Using the weighted-Holder inequality [(2.]1) for = 2,
fi(z) = 2™, fo(z) = 27V2, pp = 1, py = -1 andw = f we get

b b A b 1-X
Ary +(17/\)7‘2 dq < ( 1 dq ) < T dq )
/0 x flz)dz < /0 " f(x)dx /0 2" f(x)d,x

A 1-X
(31) m)\T1+(1—)\)T2 S m?“l ’ m’r‘z :

i.e.

If A=0o0r\=1,then|3.1) holds with equality. So we conclude thatis log-convex.
b) Let\ € (0,1), 1,75 € T andD, f < 0. Setting in the reversefl (2.3):

1 1
n=2, PL= P2 =T a; = Ary, as = (1 — \)rg,
we get
b
1+ Arp + (1 — )\)rg]q/ g AT () o
0
b A b 1-A
<[r+ 1];\[7’2 + 1];_)‘ (/ :z:”f(x)dqx> (/ x”f(x)dqx)
0 0
ie.

FOr 4 (1= Nry) < F(r) - F(rg)'™
what means that’ is log-convex.
c) We prove it in the similar manner as in part b) using Thedremg.3.

Theorem 3.2. Let f is non-negativep, r,t,u,v,w € I. Then the first inequality holds in

each of the parts a), b), c), d) and e) below. If additionally,f < 0 onT,, then the second

inequality holds in each of the parts below.flis non-negative and®2 f < 0 onT,, then the

third inequality holds in each of the parts below with- 1 as an upper bound of integrat,..
a)lfp>wu > r, then

(3.2) mhT < mP

(3.3) ([u+ Hgrm)P™" < ([ + Hgma )™ ([p + Lgmyp)* ™",

([w+2l[u + gmu)"™" = ([r + 2lg[r + gm: )P ([p + 2]g[p + 1gmy,)“ "
b)Ifp > wu,r >vandp # r,u # v, then

> ()75 ()

oo (RS < (R

AJMAA Vol. 13, No. 1, Art. 4, pp. 1-10, 2016 AIJMAA


http://ajmaa.org

PROPERTIES OFj-GAMMA AND ¢-BETA FUNCTIONS 7

c)Ifp>wu,p,uz#0,0€I,then

(3.7) (M)”p . (M)Uu,
o (e ()

d)Ifry,....,r, >0, 71 +---+r,+r,r,+r € lthen
(39) m?_lmn+.“+rn+r > Myygr s oo "My 4y

([r + 1gme)" Hri 4 4 o+ 7+ UMy gt
(3.10) >r+r+1,. . re+r 4+ e 4 oMy 4,
([r+2glr + Ugm)" o+ 1 v+ 2g[r 4 v+ 7+ gy
(3.11) <[ri+r+2,...[ratr+2r+r+1,.. ra+r+1gmesr .My
e)lfu>v>r>p,p<w<u, then

u—w w—p v—w w—r
u—p v—r

my " my " Zmy T my

w—p v—w

(3.12) ([p+ l]qmp)%([u + gmy) > > ([r + 1]ym,) v

([0 + 1gmy) >,
([p + 24[p + 1]gmy) e (fu + 1q[u + 2]61mu)H

< ([r + 2glr + gmy) = ([v+ 2Jg[v + Lgmy) =
If D,f > 0, then reverse inequalities ia (3.3), (B.9), (3.7), (3.10), (8.12) hold.

Proof. Functionm, is log-convex and ifD,f < 0, then the function/ is log-convex also.
If Dgf < 0, then the function is log-concave. So, we use various inequalities for con-
vex/concave function to get considered results.

a) The following inequality holds for a convex functiéh ([3, p.1])

H(p) H(u) H(r)
D U T >0 forp>u>nr
1 1 1

Setting in the above inequalit/ (r) = log m,. we obtain
(p—7r)logm, < (p — u)logm, + (u —r)logm,

from which we get[(3]2). The second inequality appears if wefput= log F. The third
inequality appears if we pul = log GG.

b) For any convex functio/ the following inequality

H(p) — H(r) _ H(u) — H(v)
p—r B U —v

holds forp > wandr > v, u # v,p # r, [3, p.2]. Therefore,[(3]4) andl (3.5) are simple
consequences of previous inequality if we get= logm, andH = log F'. If H is concave,

then inequality ford holds with reversed sign and we get (3.6) puttfig= log G.
c) Setting in[(3.4),[(3]5) and (3.6):= v = 0 we get desired inequalities.
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d) PuttinginB.#)p=r+...+r,+r,u=r,+r,v=rweget

1 1
My poogrpr | 10 > Mpi4r \ ™
my B my

(mT1+...+7'n+T) S > —mri-i-?"
m, m,
fori = 1,2,...,n. Multiplying all these inequalities we get (3.9). Inequalities (8.10), (3.11)
are proved in the similar manner using inequalities|(3[7)] (3.8) respectively.

e) This is a consequence of Narumi’s inequality [4]:

P Hp) + 2 LHw) > = EH(r) +

U—p U—p V=7 V=7
whereH isconvexand: > v >r >p,p<w < u. i

Remark 3.1. Let us point out thaf (3]7) is ganalogue of the Gauss-Winckler inequality. In-
equalities[(3.9)[(3.10) anf (3]11) are inequalities of Chebyshev type.

4. INEQUALITIES FOR ¢g-GAMMA AND ¢-BETA FUNCTIONS

In this section we apply Theorem B.1 grgamma and;-beta function. Here we use the
following notation:

1+a) = H(1 + ¢a),
. (d+a)F
(I4+a), = T a)s

A g-analogud’, of the gamma function|([1]) is given as

=
L,(t) = /o e E Y d, >0,

whereEy is ag-analogue of the exponential function:

X - nin— xn o0
By =Y a = (14 (- )y
n=0

Theg-beta functionB,(, s) is defined as
Ly(s)Ty (1)
B,(t,s) = -1
a(t, 9) L,(s+1)
and has the following integral representation

1
B,(t,s) = / N1 — qz); g
0

Theorem 4.1. (i) Functionst — TI',(t + 1) and¢ — B,(t + 1,s) for any fixeds > 0 are
log-convex.

(i) If s > 1, then the function — [t + 1],B,(t + 1, s) is log-convex and il < s < 1 then
this function is log-concave.

(iii) If s € [1,2], thent — [t + 2],[t + 1],B,(t + 1, s) is log-concave.

, t,5>0,
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Proof. The function £, %" is non-negative, so applying Theor3.1(a) we obtain that

fo x'E;%d,x is log-convex, i.eI'y(t + 1) is log-convex. The same argument holds for the
functiont — B,(t + 1, s) wheres is a fixed positive number.

Let us calculate a sign of-derivative of the function1 — qx)g’l. Using the following
property ([1, Lemma 2.4])

Dy(1 4 Bx);, = [t]y6(1 + Bgx), ™
we get

D,(1— qx)fl_l = —q[s — 1],(1 — qu)Z_Q.

It is non-positive iff—[s — 1], = —1‘1‘1_5;1 <0,i.e.s>1.By Theore(b), if > 1, then the
functiont — [t +1],B,(t + 1, s) is log-convex while ifs < 1 then this function is log-concave.
For the last statement let us calculate a sign of the segatetivative of the functior{l —

qx)g‘l. Using the same property from/[1, Lemma 2.4] we get

Di(1—qz);™" = Dy(Dy(1 = qu);™") = Dy(—qls — 1y(1 - ¢*2);7?)

= ’ls — Ugls — 204(1 — ¢’x); .
It is non-positive iffs € [1,2]. 1
Corollary 4.2. a) If p > u > r, then
Fyu+1)P" <Ty(r+1)P"Ty(p+1)“T,
By(u+1,8)"" < By(r+1,s)P“By(p+1,s)"",

(4.2) (Ju+1]By(u+1,8)P" < ([r+1],By(r + 1,8)P “([p+ 1];By(p+ 1,5))*", s > 1,

([u+2]4[u+1];By(u+1,5))P7" > ([r+2],[r + 1],By(r + 1,5))P 7 x

x([p+ 2]!1[17 + ”qu(p +1,8)"", s €(1,2].

If 0 < s <1, then[4.1) is reversed.
b)Ifp > u,r >vandp #r,u# v, then

1 1

[p—l—l]qu(p—}-l,S) — [u—l—l]qu(u—i—l,s) ﬁ
#.2) ([T+1]qu(7‘—l—1,s)> = ([U"i"l]qu(U‘}_l’S)) o=l

[+ 20[p + UuBy(p + 1,8)\ 77 _ (Tut2fu+t 1,Bylutls))e*
<[T+2]q[r+1]qu(7‘—l—1,s)) = ([U+2]q[v+1]qu(U+1,S)) sl
If 0 < s <1, then[4.2) is reversed.

Proof. These inequalities follows from results of Proposifio 4.1 and Theprem 3.2 a) amd b).

Other inequalities which are consequences of Theprem 3.2 c), d) and e) are also can be stated.
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