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2 SANJA VAROŠANEC

1. I NTRODUCTION

Twenty years ago a unified treatment of several inequalities related to moments of distribution
was given in papers [4] and [5]. Precisely, the following theorem was proved:

Theorem 1.1. Let f : [a, b] → R, b ∈ 〈a,∞], be a non-negative non-decreasing function. Let
pi (i = 1, . . . , n) be positive real numbers such that

∑n
i=1

1
pi

= 1. If ai (i = 1, . . . , n) are real

numbers such thatai > − 1
pi

, then

(1.1)
∫ b

a

xa1+···+anf(x)dx ≥
∏n

i=1(aipi + 1)
1
pi

1 +
∑n

i=1 ai

n∏
i=1

(∫ b

a

xaipif(x)dx

) 1
pi

provided that all integrals exist. Ifa = 0 andf is non-increasing, then the reverse inequality in
(1.1) holds.

This theorem generalizes some results from the famous book "Problems and Theorems in
Analysis" by Pólya and Szegö. Also, as a consequence of it, the Gauss-Winckler inequality is
arised :

((s + 1)ms)
1/s ≤ ((r + 1)mr)

1/r, s ≤ r

wheremr =
∫∞

0
xrf(x)dx, f is a non-negative continuous non-increasing function on[0,∞〉

such that
∫∞

0
f(x)dx = 1. For particular values:s = 2, r = 4 this inequality was given by

Gauss as an inequality between the second and the fourth moments. Nowadays inequalities
similar to (1.1) are called inequalities of Gauss-Pólya type. In this paper we give aq-analogue
of Theorem 1.1 and apply it for getting new results for theq-gamma andq-beta functions.

We use notation and definitions from the book [2] and the article [1]. Letq ∈ 〈0, 1〉 be a fixed
real number. Theq-derivativeDqf(x) of a functionf at pointx is a quotient

Dqf(x) =
f(x)− f(qx)

(1− q)x
.

Dq is a linear operator. The definiteq-integral of a functionf : [0, c〉 → R, c ∈ 〈0,∞] is
defined as ∫ b

0

f(x)dqx = (1− q)b
∞∑

k=0

qkf(bqk)

for b ∈ 〈0, c〉, provided that the series on the right-hand side converges. This kind of integral
was defined by F.H. Jackson at the beginning of the XXth century and very often it is called the
Jackson integral. If we are interested only on integral

∫ b

0
then the interval[0, c〉 as a domain of

a functionf can be substituted with a setTb = {qnb : n ∈ N0} ∪ {0}.
Theq-analogue[a]q of a real numbera is defined by

[a]q =
1− qa

1− q
.

If t ∈ R, thenDqx
t = [t]qx

t−1. Formula for integration by parts is based on theq-analogue
of the Leibniz ruleDq(f(x)g(x)) = f(x)Dqg(x) + g(qx)Dqf(x) and it has a form

(1.2)
∫ b

0

f(x)Dqg(x)dqx +

∫ b

0

g(qx)Dqf(x)dqx = f(b)g(b)− lim
n→∞

(fg)(qnb).

The structure of this paper is the following: after these introductory section we give twoq-
Gauss-Pólya inequalities. In the third section log-convexity of some functions is discussed and
several general inequalities are given. The last section is devoted to applications forq-gamma
andq-beta functions.
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PROPERTIES OFq-GAMMA AND q-BETA FUNCTIONS 3

2. THE q-GAUSS-PÓLYA INEQUALITIES

Before the main result let us give the weighted Hölder inequality forq-integral which is one
of main tools using in the proof of the main theorem.

Proposition 2.1. (The weighted Hölder inequality forq-integral.) Letpi (i = 1, . . . , n) be
positive real numbers such that

∑n
i=1

1
pi

= 1. Let w, fi : Tb → R be non-negative functions

such that integrals
∫ b

0
f1(x) · . . . · fn(x)w(x)dqx,

∫ b

0
fpi

i (x)w(x)dqx, (i = 1, . . . , n) exist. Then

(2.1)
∫ b

0

f1(x) · . . . · fn(x)w(x)dqx ≤
n∏

i=1

(∫ b

0

fpi

i (x)w(x)dqx

) 1
pi

.

Proof. The proof is based on the following discrete Hölder inequality: Ifpi (i = 1, . . . , n) are
positive real numbers such that

∑n
i=1

1
pi

= 1 and(wk)k, (fik)k (i = 1, . . . , n) are non-negative
sequences such that sums

∑∞
k=0 wkf

pi

ik ,
∑∞

k=0 wkf1k . . . fnk are finite, then

(2.2)
∞∑

k=0

wkf1k . . . fnk ≤
n∏

i=1

(
∞∑

k=0

wkf
pi

ik

) 1
pi

.

It is a consequence of more general results given in [3, p.135, p.143]. Putting in (2.2):

wk = qkw(bqk), fik = fi(bq
k), (i = 1, . . . , n)

and multiplying with(1− q)b we get

(1− q)b
∞∑

k=0

qkw(bqk)f1(bq
k) . . . fn(bqk) ≤

n∏
i=1

(
(1− q)b

∞∑
k=0

qkw(bqk)fpi

i (bqk)

) 1
pi

which is equivalent to (2.1).

The first theorem is devoted to a functionf which q-derivative has one sign onTb, while in
the second theorem we deal with a functionf which the secondq-derivative is non-positive.

Theorem 2.2. Let f : Tb → R be a non-negative function,b > 0. Let pi (i = 1, . . . , n) be
positive real numbers such that

∑n
i=1

1
pi

= 1 and letai (i = 1, . . . , n) be real numbers such

thatai > − 1
pi

.

If q-derivativeDqf ≥ 0 onTb, then

(2.3)
∫ b

0

xa1+···+anf(x)dqx ≥
∏n

i=1[aipi + 1]
1
pi
q

[1 + a1 + · · ·+ an]q

n∏
i=1

(∫ b

0

xaipif(x)dqx

) 1
pi

provided that all above-mentioned integrals exist.
If Dqf ≤ 0 onTb, then the reverse inequality in (2.3) holds.

Proof. Suppose thatDqf ≥ 0. The inequality (2.3) reduces to an equality forf ≡ 0 and thus
we may, without loss of generality, assume thatf(b) > 0. SinceDq(x

α+1) = [α]qx
α applying

integration by parts we conclude[
1 +

n∑
i=1

ai

]
q

∫ b

0

xa1+···+anf(x)dqx =

∫ b

0

Dq(x
a1+···+an+1)f(x)dqx
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4 SANJA VAROŠANEC

= f(b)ba1+···+an+1 −
∫ b

0

(qx)a1+···+an+1Dqf(x)dqx

= f(b)ba1+···+an+1 −
∫ b

0

n∏
i=1

(qx)
aipi+1

pi Dqf(x)dqx

≥ f(b)ba1+···+an+1 −
n∏

i=1

(∫ b

0

(qx)aipi+1Dqf(x)dqx

)1/pi

,

where in the last inequality we use theq-weighted Hölder inequality (2.1) with a non-negative

weightDqf(x) and functionsfi(x) = (qx)
aipi+1

pi , (i = 1, . . . , n).
Let us consider the Popoviciu inequality [3, p. 118]:

m∑
j=1

wjaj1 · . . . · ajn ≥
n∏

i=1

(
m∑

j=1

wja
pi

ji)
1/pi ,

wherew1 > 0, w2, . . . , wm ≤ 0, aji ≥ 0 for j = 1, . . . ,m, i = 1, . . . , n , pi > 0 such that∑n
i=1

1
pi

= 1 and
∑m

j=1 wja
pi

ji ≥ 0 for i = 1, . . . , n.
Set:

m = 2, w1 = f(b) > 0, w2 = −1, a1i = b
aipi+1

pi ,

a2i =

(∫ b

0

(qx)aipi+1Dqf(x)dqx

)1/pi

for i = 1, . . . , n.

Using the Popoviciu inequality and integration by parts we obtain

f(b)ba1+...+an+1 −
n∏

i=1

(∫ b

0

(qx)aipi+1Dqf(x)dqx

)1/pi

≥
n∏

i=1

(
f(b)baipi+1 −

∫ b

0

(qx)aipi+1Dqf(x)dqx

)1/pi

=
n∏

i=1

(
[aipi + 1]q

∫ b

0

xaipif(x)dqx

)1/pi

and so, (2.3) is proven.
If Dqf ≤ 0, then the first inequality is obtained by applying the Hölder inequality with the

non-negative weightw(x) = −Dqf(x) ≥ 0, and the second inequality is obtained by applying
the Hölder inequality for discrete case instead of the Popoviciu inequality and the proof is
similar to the previous one.

Theorem 2.3. Let f : T1 → R be a non-negative function such thatD2
qf ≤ 0. Let pi (i =

1, . . . , n) be positive real numbers such that
∑n

i=1
1
pi

= 1 and letai (i = 1, . . . , n) be real

numbers such thatai > − 1
pi

.

If
∫ 1

0
xaipif(x)dqx, (i = 1, . . . , n) exist, then∫ 1

0

xa1+···+anf(x)dqx ≥
∏n

i=1[aipi + 2]
1
pi
q [aipi + 1]

1
pi
q

[2 + a1 + · · ·+ an]q[1 + a1 + · · ·+ an]q

n∏
i=1

(∫ 1

0

xaipif(x)dqx

) 1
pi

.
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Proof. Using the inequality between the geometric mean and the arithmetic mean and then
integration by parts twice, we get

n∏
i=1

[aipi + 2]
1
pi
q [aipi + 1]

1
pi
q

n∏
i=1

(∫ 1

0

xaipif(x)dqx

) 1
pi

≤
n∑

i=1

1

pi

[aipi + 2]q[aipi + 1]q

∫ 1

0

xaipif(x)dqx

=
n∑

i=1

1

pi

[aipi + 2]q

(
f(1)−

∫ 1

0

(qx)aipi+1Dqf(x)dqx

)

= f(1)
n∑

i=1

1

pi

[aipi + 2]q −
n∑

i=1

1

pi

qaipi+1

(
Dqf(1)−

∫ 1

0

(qx)aipi+2D2
qf(x)dqx

)
.(2.4)

Using a definition of[aipi + 2]q and inequality between the geometric mean and the arithmetic
mean we get

n∑
i=1

1

pi

[aipi + 2]q =
n∑

i=1

1

pi

1− qaipi+2

1− q
=

1

1− q

(
n∑

i=1

1

pi

−
n∑

i=1

1

pi

qaipi+2

)

≤ 1

1− q

(
1−

n∏
i=1

q
aipi+2

pi

)
=

1

1− q

(
1− q2+a1+···+an

)
= [2 + a1 + · · ·+ an]q.

So, (2.4) is less than or equal to the following

f(1)[2 +
n∑

i=1

ai]q −Dqf(1)q1+
Pn

i=1 ai +

∫ 1

0

1

q

(
n∑

i=1

1

pi

(q2x)aipi+2

)
D2

qf(x)dqx

≤ f(1)[2 +
n∑

i=1

ai]q −Dqf(1)q1+
Pn

i=1 ai +

∫ 1

0

1

q

(
n∏

i=1

(q2x)
aipi+2

pi

)
D2

qf(x)dqx

= f(1)[2 +
n∑

i=1

ai]q −Dqf(1)q1+
Pn

i=1 ai +

∫ 1

0

q
Pn

i=1 ai+1(qx)
Pn

i=1 ai+2D2
qf(x)dqx

= [2 + a1 + · · ·+ an]q[1 + a1 + · · ·+ an]q

∫ 1

0

xa1+···+anf(x)dqx,

where in the first inequality we again use the inequality between the geometric mean and the
arithmetic mean and in the last line we use integration by parts.

3. L OG-CONVEXITY AND CONSEQUENCES

In this section we consider functionsmr, F andG defined as

r 7→ mr =

∫ b

0

xrf(x)dqx

F (r) = [r + 1]qmr = [r + 1]q

∫ b

0

xrf(x)dqx

and

G(r) = [r + 2]q[r + 1]qmr = [r + 2]q[r + 1]q

∫ 1

0

xrf(x)dqx.
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6 SANJA VAROŠANEC

By I we denote a domain of definition of these functions. Under certain assumptions these
functions are log-convex or log-concave and since that, several inequalities hold for them.

Theorem 3.1.a) If f is non-negative onTb, then the functionmr is log-convex.
b) If f is non-negative such thatDqf ≤ 0 on Tb, then the functionF is log-convex. If

Dqf ≥ 0, thenF is a log-concave function.
c) If f is non-negative such thatD2

qf ≤ 0 onT1, then the functionG is log-concave.

Proof. (a) Letλ ∈ 〈0, 1〉, r1, r2 ∈ I. Using the weightedq-Hölder inequality (2.1) forn = 2,
f1(x) = xλr1, f2(x) = x(1−λ)r2 , p1 = 1

λ
, p2 = 1

1−λ
andw = f we get∫ b

0

xλr1+(1−λ)r2f(x)dqx ≤
(∫ b

0

xr1f(x)dqx

)λ(∫ b

0

xr2f(x)dqx

)1−λ

i.e.

(3.1) mλr1+(1−λ)r2 ≤ mλ
r1
·m1−λ

r2
.

If λ = 0 or λ = 1, then (3.1) holds with equality. So we conclude thatmr is log-convex.
b) Letλ ∈ 〈0, 1〉, r1, r2 ∈ I andDqf ≤ 0. Setting in the reversed (2.3):

n = 2, p1 =
1

λ
, p2 =

1

1− λ
, a1 = λr1, a2 = (1− λ)r2,

we get

[1 + λr1 + (1− λ)r2]q

∫ b

0

xλr1+(1−λ)r2f(x)dqx

≤ [r1 + 1]λq [r2 + 1]1−λ
q

(∫ b

0

xr1f(x)dqx

)λ(∫ b

0

xr2f(x)dqx

)1−λ

i.e.
F (λr1 + (1− λ)r2) ≤ F (r1)

λ · F (r2)
1−λ

what means thatF is log-convex.
c) We prove it in the similar manner as in part b) using Theorem 2.3.

Theorem 3.2. Let f is non-negative,p, r, t, u, v, w ∈ I. Then the first inequality holds in
each of the parts a), b), c), d) and e) below. If additionally,Dqf ≤ 0 on Tb, then the second
inequality holds in each of the parts below. Iff is non-negative andD2

qf ≤ 0 on T1, then the
third inequality holds in each of the parts below withb = 1 as an upper bound of integralmr.

a) If p > u > r, then

(3.2) mp−r
u ≤ mp−u

r mu−r
p ,

(3.3) ([u + 1]qmu)
p−r ≤ ([r + 1]qmr)

p−u([p + 1]qmp)
u−r,

([u + 2]q[u + 1]qmu)
p−r ≥ ([r + 2]q[r + 1]qmr)

p−u([p + 2]q[p + 1]qmp)
u−r.

b) If p ≥ u, r ≥ v andp 6= r, u 6= v , then

(3.4)

(
mp

mr

) 1
p−r

≥
(

mu

mv

) 1
u−v

,

(3.5)

(
[p + 1]qmp

[r + 1]qmr

) 1
p−r

≥
(

[u + 1]qmu

[v + 1]qmv

) 1
u−v

,

(3.6)

(
[p + 2]q[p + 1]qmp

[r + 2]q[r + 1]qmr

) 1
p−r

≤
(

[u + 2]q[u + 1]qmu

[v + 2]q[v + 1]qmv

) 1
u−v

.
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c) If p ≥ u, p, u 6= 0, 0 ∈ I, then(
mp

m0

)1/p

≥
(

mu

m0

)1/u

,

(3.7)

(
[p + 1]qmp

m0

)1/p

≥
(

[u + 1]qmu

m0

)1/u

,

(3.8)

(
[p + 2]q[p + 1]qmp

[2]qm0

)1/p

≤
(

[u + 2]q[u + 1]qmu

[2]qm0

)1/u

.

d) If r1, . . . , rn > 0, r1 + · · ·+ rn + r, ri + r ∈ I then

(3.9) mn−1
r mr1+···+rn+r ≥ mr1+r · . . . ·mrn+r,

([r + 1]qmr)
n−1[r1 + · · ·+ rn + r + 1]qmr1+···+rn+r

(3.10) ≥ [r1 + r + 1]q . . . [rn + r + 1]qmr1+r . . . mrn+r,

([r + 2]q[r + 1]qmr)
n−1[r1 + · · ·+ rn + r + 2]q[r1 + · · ·+ rn + r + 1]qmr1+···+rn+r

(3.11) ≤ [r1 + r + 2]q . . . [rn + r + 2]q[r1 + r + 1]q . . . [rn + r + 1]qmr1+r . . . mrn+r.

e) If u > v > r > p, p ≤ w ≤ u, then

m
u−w
u−p
p m

w−p
u−p
u ≥ m

v−w
v−r
r m

w−r
v−r
v ,

(3.12) ([p + 1]qmp)
u−w
u−p ([u + 1]qmu)

w−p
u−p ≥ ([r + 1]qmr)

v−w
v−r ([v + 1]qmv)

w−r
v−r ,

([p + 2]q[p + 1]qmp)
u−w
u−p ([u + 1]q[u + 2]qmu)

w−p
u−p

≤ ([r + 2]q[r + 1]qmr)
v−w
v−r ([v + 2]q[v + 1]qmv)

w−r
v−r .

If Dqf ≥ 0, then reverse inequalities in (3.3), (3.5), (3.7), (3.10), (3.12) hold.

Proof. Functionmr is log-convex and ifDqf ≤ 0, then the functionF is log-convex also.
If D2

qf ≤ 0, then the functionG is log-concave. So, we use various inequalities for con-
vex/concave function to get considered results.

a) The following inequality holds for a convex functionH ([3, p.1])∣∣∣∣∣∣
H(p) H(u) H(r)

p u r
1 1 1

∣∣∣∣∣∣ ≥ 0 for p > u > r.

Setting in the above inequalityH(r) = log mr we obtain

(p− r) log mu ≤ (p− u) log mr + (u− r) log mp

from which we get (3.2). The second inequality appears if we putH = log F . The third
inequality appears if we putH = log G.

b) For any convex functionH the following inequality

H(p)−H(r)

p− r
≥ H(u)−H(v)

u− v

holds forp ≥ u andr ≥ v, u 6= v, p 6= r, [3, p.2]. Therefore, (3.4) and (3.5) are simple
consequences of previous inequality if we setH = log mr andH = log F . If H is concave,
then inequality forH holds with reversed sign and we get (3.6) puttingH = log G.

c) Setting in (3.4), (3.5) and (3.6):r = v = 0 we get desired inequalities.
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d) Putting in (3.4):p = r1 + . . . + rn + r, u = ri + r, v = r we get(
mr1+...+rn+r

mr

) 1
r1+...+rn

≥
(

mri+r

mr

) 1
ri

i.e. (
mr1+...+rn+r

mr

) ri
r1+...+rn

≥ mri+r

mr

for i = 1, 2, . . . , n. Multiplying all these inequalities we get (3.9). Inequalities (3.10), (3.11)
are proved in the similar manner using inequalities (3.7), (3.8) respectively.

e) This is a consequence of Narumi’s inequality [4]:

u− w

u− p
H(p) +

w − p

u− p
H(u) ≥ v − w

v − r
H(r) +

w − r

v − r
H(v)

whereH is convex andu > v > r > p, p ≤ w ≤ u.

Remark 3.1. Let us point out that (3.7) is aq-analogue of the Gauss-Winckler inequality. In-
equalities (3.9), (3.10) and (3.11) are inequalities of Chebyshev type.

4. I NEQUALITIES FOR q-GAMMA AND q-BETA FUNCTIONS

In this section we apply Theorem 3.1 onq-gamma andq-beta function. Here we use the
following notation:

(1 + a)∞q =
∞∏

j=0

(1 + qja),

(1 + a)t
q =

(1 + a)∞q
(1 + aqt)∞q

.

A q-analogueΓq of the gamma function ([1]) is given as

Γq(t) =

∫ 1
1−q

0

xt−1E−qx
q dqx, t > 0,

whereEx
q is aq-analogue of the exponential function:

Ex
q =

∞∑
n=0

qn(n−1)/2 xn

[n]!
= (1 + (1− q)x)∞q .

Theq-beta functionBq(t, s) is defined as

Bq(t, s) =
Γq(s)Γq(t)

Γq(s + t)
, t, s > 0,

and has the following integral representation

Bq(t, s) =

∫ 1

0

xt−1(1− qx)s−1
q dqx.

Theorem 4.1. (i) Functionst 7→ Γq(t + 1) and t 7→ Bq(t + 1, s) for any fixeds > 0 are
log-convex.

(ii) If s ≥ 1, then the functiont 7→ [t + 1]qBq(t + 1, s) is log-convex and if0 < s < 1 then
this function is log-concave.

(iii) If s ∈ [1, 2], thent 7→ [t + 2]q[t + 1]qBq(t + 1, s) is log-concave.
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Proof. The functionE−qx
q is non-negative, so applying Theorem 3.1(a) we obtain thatt 7→∫ 1

1−q

0 xtE−qx
q dqx is log-convex, i.e.Γq(t + 1) is log-convex. The same argument holds for the

functiont 7→ Bq(t + 1, s) wheres is a fixed positive number.
Let us calculate a sign ofq-derivative of the function(1 − qx)s−1

q . Using the following
property ([1, Lemma 2.4])

Dq(1 + βx)t
q = [t]qβ(1 + βqx)t−1

q

we get

Dq(1− qx)s−1
q = −q[s− 1]q(1− q2x)s−2

q .

It is non-positive iff−[s−1]q = −1−qs−1

1−q
≤ 0, i.e. s ≥ 1. By Theorem 3.1(b), ifs ≥ 1, then the

functiont 7→ [t + 1]qBq(t + 1, s) is log-convex while ifs < 1 then this function is log-concave.
For the last statement let us calculate a sign of the secondq-derivative of the function(1 −

qx)s−1
q . Using the same property from [1, Lemma 2.4] we get

D2
q(1− qx)s−1

q = Dq(Dq(1− qx)s−1
q ) = Dq(−q[s− 1]q(1− q2x)s−2

q )

= q3[s− 1]q[s− 2]q(1− q3x)s−3
q .

It is non-positive iffs ∈ [1, 2].

Corollary 4.2. a) If p > u > r, then

Γq(u + 1)p−r ≤ Γq(r + 1)p−uΓq(p + 1)u−r,

Bq(u + 1, s)p−r ≤ Bq(r + 1, s)p−uBq(p + 1, s)u−r,

(4.1) ([u + 1]qBq(u + 1, s))p−r ≤ ([r + 1]qBq(r + 1, s))p−u([p + 1]qBq(p + 1, s))u−r, s ≥ 1,

([u + 2]q[u + 1]qBq(u + 1, s))p−r ≥ ([r + 2]q[r + 1]qBq(r + 1, s))p−u×

×([p + 2]q[p + 1]qBq(p + 1, s))u−r, s ∈ [1, 2].

If 0 < s < 1, then (4.1) is reversed.
b) If p ≥ u, r ≥ v andp 6= r, u 6= v , then(

Γq(p + 1)

Γq(r + 1)

) 1
p−r

≥
(

Γq(u + 1)

Γq(v + 1)

) 1
u−v

(
Bq(p + 1, s)

Bq(r + 1, s)

) 1
p−r

≥
(

Bq(u + 1, s)

Bq(v + 1, s)

) 1
u−v

(4.2)

(
[p + 1]qBq(p + 1, s)

[r + 1]qBq(r + 1, s)

) 1
p−r

≥
(

[u + 1]qBq(u + 1, s)

[v + 1]qBq(v + 1, s)

) 1
u−v

, s ≥ 1

(
[p + 2]q[p + 1]qBq(p + 1, s)

[r + 2]q[r + 1]qBq(r + 1, s)

) 1
p−r

≤
(

[u + 2]q[u + 1]qBq(u + 1, s)

[v + 2]q[v + 1]qBq(v + 1, s)

) 1
u−v

, s ∈ [1, 2].

If 0 < s < 1, then (4.2) is reversed.

Proof. These inequalities follows from results of Proposition 4.1 and Theorem 3.2 a) and b).

Other inequalities which are consequences of Theorem 3.2 c), d) and e) are also can be stated.
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[4] J. PEČARIĆ, S. VAROŠANEC, Remarks on Gauss-Winckler’s and Stolarsky’s Inequalities,Utili-
tas Mathematica, 48 (1995), pp. 233–241.
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