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2 ANDREAS BOUKAS AND PHILIP FEINSILVER

1. INTRODUCTION

Based on the notion a@fuantum stochastic procedsveloped in[[1], a first example glian-
tum stochastic calculum Fock space [16] presented a noncommutative approach extending
classical Itd calculus. Based on vector-valued integrators and integigtndbastic integrals
were defined via strong?-limits of matrix elements. Some generalizations of the Lebesgue

integral from scalars to vectors are these:

Bochner integral [5],[[18] (Banach space valued integrand and scalar valued measure)
Gelfand-Pettis integral [17], [14] (weak sense version of Bochner’s integral)
Bartle-Dunford-Schwartz integrall[4] (scalar valued integrand and vector valued mea-
sure)

Bartle integrall[3] (vector valued integrand and measure).

In this paper, using the Bartle integral, we present a straightforward definition of integrals with
respect to quantum stochastic processes, i.e., families of operators on Fock space, adapted in
a certain sense, with respect to vector valued Stieltjies measures. We focus here on integrators
defined in terms of the generators of the Heisenberg and Finite Difference Lie algebras in Fock
space representation.

2. VECTOR VALUED MEASURES AND BARTLE'’S INTEGRAL

Let 2 be a set,F ao-field of subsets of2” andY a normed linear space. XK-valued
measureon 2" is a countably additive set function : 7 — Y. If 2" = [0,00) and F is
the o-field of the Borel measurable subsets.#f thenm is called aStielties measureThe
semi-variationof m is the extended real-valued set functipn|| defined on eaclv € F by

[lm|(£ —SUPHZIEZ Eilly

where the supremum is over all finite partltlonsE)ﬁnto disjoint sets{E;}F_, ¢ F, k € N,
and all finite collections of elements;;}*_, c B(Y), the space of bounded linear operators
T:Y — Y, with ||z;||gyy < 1. Thevariation of m is the extended real-valued set function
|m| defined on eacl € F by

m|(E) = supz [l (E:)[ly

ied

where the supremum is over all finite famili€g; ; i € J} of disjoint subsets ofF such that
E = U, E;. If 2 is atopological space and for eathe F givene > 0 there exist a compact
set K and an open se&t such thatX’ ¢ £ C G and for everyE’ € F with K C E' C G,
|lm(E) —m(E")|ly < ethenm is calledregular. If f: [0, 00) — Y whereY is a normed space
and[a, b] C [0, 00) then thetotal variation V’( f) of f on|a, b] is defined by

Vo(f) = sup Vin(f)

where
M={a=ty<t;<..<t,1<t,=0b}
is a partition of{a, b] and

an 1) = F)lly
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If V2(f) < oo forall[a,b] C [0,00) thenf is said to bewith finite variation To each functiorf
with finite variation there corresponds [10] a unique countably additive regular Stieltjes measure
m with finite variation, such that for all, b € R

my ([a,0]) =f(b+) — fla=) , my([a,0)) = f(b—) — f(a—)
my ((a,0]) =f(b+) = fla+) , my((a,)) = f(b=) = f(at)

If Y is a Banach space amd is a Stieltjes measure thersample functionf: 2" — B(Y)isa
function of the form .
f= Z fixe,

wheren € N, E; € F, [|m|(E;) < oo, f; e_B(Y) foreachi andE, N E; = Qif i # j. If
E € F andf is a simple function then tﬁetegral of f overFE is defined by

| #6symias Zfz (ENE)

A sequencef,,: & — B(Y) is said toconverge inm-measurgo a functionf: 2~ — B(Y)
if for eache > 0, [|m|| ({s € 2/ ||fa(s) — f(s)|lsv) = €}) — 0 asn — oco. A function
f: Z — B(Y) is m-measurabléf it is the limit in m-measure of a sequence of simple func-
tions. Such a functiorf is Bartle m-integrable overZ” if there is a sequencf,, }22 , of simple
functions such that:

e f, — finm-measure

e The sequencé\, }2°, of integrals

/fn , FeF

has the property that given> 0 there is§ = d(e) > 0 such that|m/||(E) < ¢ implies
[An(E)[ly <€
If fis Bartlem-integrable ovetZ™ then for eacht € F the sequencé\,(E)}>2, converges
in || - ||y andthe integral off over E is defined by

/f m(ds) = lin [ f,(s) m(ds)

n—oo

Theorem 2.1.LetY be a Banach space and I¢t [0,00) — B(Y) be Bartle integrable with
respect to a countably additive regularvalued measure: defined on the-field of Borel mea-
surable subsets 96, co). Then, for any > 0 there exists a step functian [0, c0) — B(Y),
i.e. g = >, aix, Wherea; € B(Y') and thel;’s are pairwise disjoint bounded subintervals
of [0, c0), such that

s)dm(s) — s)ydm(s)|ly < e
I s)ans Amﬂ” )y <

Proof. By Theorem 1 of [[3] there exists a simple functien: [0,00) — B(Y), sayo =
> e bixs, whereb; € B(Y) and theB,’s are pairwise disjoint Borel measurable subsets of

[0, 00) with finite semivariatiorim||(B;), thus||m(B;)||y < oo, such that
€

V[ fs)dm <>—A ole)dm(s)ly < g

[0,00)

Now letd = §<1+Zj21 HijB(y)> and fixj € {1,2,...,m}. By the regularity ofm there
exists an open sdf; C [0,00) such thatB; C U, and|m(U;) — m(B;)|ly < d, which
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implies that||m(U;)|ly < ||m(B;)|ly + 6 < oco. For eachj, U; = U2, I, where thel;;’s
are pairwise disjoint open subintervals[0f co). By the countable additivity ofn we have
I o2 mLilly = [m(U;)]ly < co. Thus, there existsy such that] >3, m(Lx) |y =

1> o m(Ljk) — Zk om(Lir)lly < 6. LetV; = 01 k- Then

oo

lm(Vy) = m(By)lly = lm(U;) = ) m(Lx) —m(B))|ly

<|m(Uy) =m(B)ly + 1 > mLx)lly <26

k=ko+1

Now letg = Z;.”:l bjxvj. Since eaclV] is a finite union of intervalsy is a step function. Also,

I a(s) dm(s) —/ g(s)dm(s)lly = || Y bym(B;) = Y bym(Vy)lly
[0,00) [0,00) j=1 j=1
< Z 1651[B0vy [[m(Bj) = m(Vi)lly < Z 16511y 20
<1+Zub laer ) 5< s

by the definition of. Thus

— s)dm(s)||y
I o f() m(s) /[07 )9() ()]l
o(s)dm(s) / g(s) dm(s)ly

[0,00)

— o(s)dm(s)|ly
<| [Ooof() m(s) /[0700)() (s)lly + 1]

[0,00)

<= —_ =
2+2 ¢

3. BOCHNER’S THEOREM AND QUANTUM STOCHASTIC INTEGRALS

Definition 3.1. A continuous functiory: R — C is positive definitef

//ft—s Va(s) dt ds > 0

for every continuous function : R — C with compact support.

Bochner’s theorem [18] states that such a function can be represented as

16 = [ e o

whereuv is a non-decreasing right-continuous bounded functiorf(0f = 1 then such a func-
tion v defines a probability measure hand Bochner’s theorem says thats the Fourier
transform of a probability measure, i.e., the characteristic function of a random variable that
follows the probability distribution defined by, Moreover, the condition of positive definite-
ness off is necessary and sufficient for such a representation. An example of such a positive
definite function is provided by

f(t) = <(I)’ eitX(I)>
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where® is the normalized (i.e||®| = 1) vacuum vector of a Fock-Hilbert spacg and X
is anobservablgself-adjoint operator or##) also called aguantum random variabla which

case
[ [se=somasaras = [

In this paper we consider quantum random variabfescting on the Fock spac# associated
with the Heisenbergs[(2, R), Square of White Noise, and Finite Difference Lie algebras.

>0

Definition 3.2. Let S be a test function space and for egthke S let ¢/(f) be the associated
exponential vectorin particular® = ¢(0) is the vacuum vector. Denofe= span{)(f)/ f €
S}If

<'7'> EXE [0700)
is an inner product o then theFock space# over S is the Hilbert space completion of

(5’ <" >)

Definition 3.3. A family {X(¢) /¢t > 0} of quantum random variables is calledqjaantum
stochastic procesH it is adaptedin the following sense: for each > 0 and¢(f) € &,
X)W (f) = Xgv(fy) @ (f), wherefy = fxpqg and fi = fX(@0) [19], i.€., we have a
decompositionX (t) = X, ® 1, corresponding to the decompositionf) = ¥ (f) ® ¥ (fu)-
If for eacht > 0, X}, is a bounded linear operator then the process is said bobeded

Our goal is to define, in the sense of Bartle [3], stochastic integrals of the form

[ #saxcs

where E is a measurable subset [6f o) and f: [0, 00) — B(.%) whereB(.%) is the space

of bounded linear operatofis: . — .%. The integratorsX will in each case act on the Fock
spaces#y and .%rp, associated with the Heisenberg [9/) 11| 13, 15] and Finite Difference
[6,(7,[11]12| 18] Lie algebras respectively. The Square of White Noise [2§(&Rdintegrators

can be expressed as linear combinations of the Finite Difference integrators and so they are also
covered. TheZ#, and.%rp Fock spaces have been essential in the development of quantum
stochastic calculus.

4. MAIN EXAMPLES: THE BASIC INGREDIENTS

The basic ingredients used to build a quantum stochastic process are these:

the test function space

inner product of exponential vectors
action of the integrators
commutation relations

We present these for our main examplés; and.% - p.

(1) Heisenberg Fock spacy;: In this caseS = (L? N L=)([0, c0), C) with inner product
(W(f),¥(9) = elo” F(s)g(s) du(s)

wherey is Lebesgue measure and the basic integratorg gfe Af(f) with action

= ([ fa0ar) vio) . A0 = Savtaten)
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and commutation relations

Awnzlfmmwﬁ

Moreover, using the notatioN (t) = X (xo,q) We obtain[16] the matrix elements

t

<Mﬁﬂ®%@>=/ﬁ$%<wﬂW@>

0

<wU%M®WW>:Av%MS<MﬁW@>
:AU@MzAEmmm<wu»wm>

A
=
=
=
=
=
©
=
s
v

<Awwuwﬂ@wm>=(AVumaégWMw+mML@)<wnwww>

(2) Finite Difference Fock spac&rp: In this case
S={f:[0,00) — R,|f| <1, fis asimple functioh
with inner product

(W(f),¥(g) =e Jo o In(1—£(s)g(s)) du(s)

wherey is Lebesgue measure and the basic integratorBefe Q(f), T'(f) with action

Qm¢@:2¢ow<+dnw< %)

(/Lf w+Qfm)M)
ﬂﬁwmz( )+ P(f +A‘nmww)wm

commutation relations
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and matrix elements [8], [12], [13]

[P f(1+g)

<o), Pwute) >= [ D) as < v 00 >
<vtn.@wute) == [ B as < oig).v0) >

1+ /)(1+9)
s ds < (). 000) >

<Poutn), Pt >= ([ D0 e [ A D

et fo(1+ f)(1+ g)
v S dz> < B wlo) >

<@, @) >=( [ 20 [H D)0

s (14 f)(1+ g)
<11t = [ L g [FEEIEED 0 gy

min{t,s} 2 2
_|_/0 (1+f) (1+9) (z)dz><¢(f),¢(g)> .

<UD TN >= | !

(1—fg)?

In [2] it was shown that itB}, B, and N, wheref, g, h are test functions, are the generators
of the Square of White Noise Lie algebra with chargeorresponding to the renormalization
5% = ¢ of the square of the Dirac delta function, and commutation relations

[By, BY] = 2(;/0 (9f)(s)ds + 4Ny, [Ny, BY] = 2B}, By, Ny = —2By,

which are a trivial central extension of ts&2) commutation relations, then the Square of
White Noise operators are related to the Finite Difference operators through

1

QU =5 (Bl + ;) L P() =

: (B Np) T(H) = [ f(6)ds1 PU) + QU

1
2

5. THE STIELTJES MEASURES IN THE %y AND .z CASES

Proposition 5.1. In the Heisenberg case, for eaghe S the functions
F:tel0,+o00)— At)Y(f) € Fu

and
G:tel0,+00) — A)Y(f) € Fy

whereA(t) = A(xp,y) and A(t) = A'(x(0,), are with finite variation.
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Proof. Let f € (L?> N L*)([0,00),C), let M = esssup (f) and letll = {a = 2y < ;1 < ...

Tp—1 <

ANDREAS BOUKAS AND PHILIP FEINSILVER

xn-b}apanmonoﬂab]g[ +00). Then

Z 1F i) = F(t:)]] 4

i
L

.

((F(tix1), F(tipr)) — (Ftin), F(t) = (F(t:), Ftin)) + (F(t:), F(t:))"?

Il
o

3
L

F||1

<.

—~ o

i
L

Thus

(At ) (), Alti)(£)) = (At 0 (), At ()
AU (), AlticJ0(F) + (A (F), Alta)w(f)"

tit1 tit1 tit1

f(s)ds f(s)ds — f(s) ds/oif(s) ds

—o \Jo 0 0

V) (F) = sup Vn(F) < M(b = a) [0 (f)I| < o0

a

Similarly

Va(G) = Y 16(tis) ~ G015,

n—

[y

(G(tis1), Gtisn)) = (Gltisn), G(1:)) = (G(t:), Gltin)) + (Gt G(t:) "

-
I

3
|

(<AT<ti+1>1/J(f)a At )0 (f)) — (AN ti) 0 (), AT ()Y ()

(]

o
Il

1/2

ANt (f), AT (ti)0 () + (AT ()0 (), AT(t)w (f))
(Ot”lﬂs)ds Ot“ﬂ)dswﬂ— / (s /ti“fuds—ti

1/2

[ sras [ i [ s [ s ds+t) ()

—~ o

[y

n—

=0

AJMAA Vol. 13, No. 1, Art. 3, pp. 1-15, 2016
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1/2

(' / f(s)dsl” + (ti1 - m) Il

N 5 9 1/2
M2t — 1 + (Ve — ) ()l

ﬁ
Il
o

i
L

IA
—

@
Il
o

and using\/z2 + y? < x + y for 2,y > 0, we have

)_l

Z o —t) (P + i Vit — & [[o(f)

1=0

=M(b—a) [[¥(f H+Z\/ i1 — b [0S

Sincel};(G) increases as the partitidhbecomes finer and we are interested in the supremum
over all partitiondI, we may assume that?;;; — ; < 2 *foralli = 0,1, .... Thus

W(6) < (M(b—a>+§;§> )] < (M(b=a) +2) ()] < o0

and so

a

V) (G) = Sup Vin(G) < (M(b = a) +2) [[¥(H)]l < o

Proposition 5.2. In the Finite Difference case, for eaghc S the functions

F:tel0,+00)— P(t)U(f) € Frp
G:te [0, +OO) — Q(t)w(f) € %rp

and

H:te[0,4+00) — Tt)Y(f) € Frp
whereP(t) = P(xj,4), @(t) = Q(x,9) @ndT'(t) = T'(xo,4), are with finite variation.
Proof. Let [ = Zle kX, be a simple functionand = {a =2y < 21 < ... < Ty < T, =

b} a partition of{a, b] C [0,400). Let alsop = 11% Theng¢ is a also a S|mple function with
M = max{¢(x) : x > 0} < oo. Therefore

AJMAA Vol. 13, No. 1, Art. 3, pp. 1-15, 2016 AJMAA
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n—1
=Y N F(tis1) = F(t:)| #pp
=0
n—1

= ((F(tixr), F(tipr)) — (Ftin), F(t)) = (F(t:), F(tin)) + (F(t:), F(t:))"?

@
Il
=)

3| .
—_

(P (i) (f), P(tiy)P(f)) — (P(tir)(f), P(t:)d(f))

0

(P(t)UO(F), Pt )0 (f)) + (PE)O(F), Pt (f))"?

=3 ([ ot [ oass [T eran [Mowas [o

=0

—/ ds—/¢ ds/¢ds—/¢2 ds+/¢ ds/qﬁ

1/2

v/ ") i) o)l

r:l (/ o(s ) +/tltl+1¢2(s)ds>l/2 1D ()]

<M (s =1 + (s — 1) 7 o)

=0

.
Il

»—\/_\

As in the proof of Propositioh 5.1 we may assume tat; — ¢;)2 < (t;y; —t;) < 2% for all
i=0,1,... Thus

Va(F) < <ﬂMZ§> [l < 2V3M (P < oo

and so

V)(F) = sup Vi (F) < 2V2M |9 (f)] < o0

Similarly lettingo = 7=z, and lettingKk” > 1 be such thatp(x)| < K and|o(z)| < K for all

x > 0 we have

(1- f

AJMAA Vol. 13, No. 1, Art. 3, pp. 1-15, 2016 AJMAA
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=3 6Gin) - G,
= (Glti). Glts)) = (Gltas2). Gl1) — (G0, Gltn)) + (G0, Gt

=" (Q(tix ) (), Q(tix ) ()) — (Qtix) ¥ (f), Qt)U(f))
Z+1>w<f>> H(Qt)Y(f), Qt)w ()

Q(t;
( ”1,5 ) ds_/¢ [ ot [ ot

1/2

[T otsras [Mowas— [“otass ([To) + /Ot"a<s>ds) e
-5 (( o) ) + [ ds> " o

<K, ((tis = 1) + (tin — 1)) [0()]] < 2V2K [0 (f)]] < 00

—_

V(G) = sup Vi (G) < 2V2K |[¢(f)]| < oo

Finally, lettingp = 1+f andL > 1 be such thafp(x)| < L for all z > 0 we have
= Z [ H (tir1) — Ht:) || 700
=0
1

((H(ti1), H(tien)) — (H (), H(t,)) — (H(t), H(tie)) + (H(t:), H(t;))"?

n

Il
-
Il |
(e}

3‘ .
[asy

(T (i) (f), Ti)(f)) = (T (i) (), T(8:)9 ()

0

-.
Il

|
=~

T(t)%(f), T(tis) () + (T (), T(E:)())"?

_ (( [ ot ds)z [ [T s o= [

1=0

= [Cotras [ ptsras— [y as+ (/ p<s>>2+ [ 76 ds> " e

2

s (( / (o) ds) v f ) ds) " W) < 2L I < oo

1=0

3

AJMAA Vol. 13, No. 1, Art. 3, pp. 1-15, 2016 AJMAA
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and so
V(H) = sSup Vin(H) < 2vV2L [[(f)] < o0
O

Notation . For X € {A, AT, P,Q, T} and for a test functiop we denote byn, , the Stieltjes
measure defined by the functions of bounded variatio@, / as in Propositions 5.1 and $.2.

Since they are with finite variation, it follows [10] that the measurgs, are regular.

6. DEFINITION OF THE STOCHASTIC INTEGRAL

Definition 6.1. For each measurable subgetof [0, 00), for X € {A A", P,Q, T} and for
f:]0,00) — B(F), where.# = Fy or % = Zpp, integrable with respect to the Stieltjes
measuren,  defined byX and the arbitrary test function we define the integral of with
respect taX on the exponential domaias the operator

/Ef(s)dX(s):EHﬁ

/E F(s) dX (5) ¥(g) = /E £(s)dm, ,(s)

Proposition 6.1. Let X € {4, A", P,Q,T} and letf: [0,00) — B(%), where.Z = g
or # = Zrp, be integrable Wlth respect to the Stleltjes measure defined byX and the
arbitrary test functiory and such that the map— f(¢) is continuous. Then, on each interval
[a,b] C [0, 00)

with

f(s)dX = 11me (sx) (D(5r41) — @(s1))

[a b} I1—0

wherell = {sp = a < 51 < ... < s, = b} is any partition of[a,b], ¢ € {F,G, H} where
F,G, H are as in Propositions 51 anid .2 and the limit is in thenorm sense.

Proof. For eachn > 1 definef,, : [0,00) — B(.%#) by
ful(s) = {Zi\lo (83 )X[sasnpn) 1 5 € [a, ]

f(s) otherwise
Then

[ }fn(s) dmyg(s) = f(s2)mxg ([sx: 5a11))
ab A=0
We will show thatf,, converges tgf uniformly on|0, oo). Sincef,, agrees withf outside[a, b],
it suffices to show that,, converges togf uniformly on[a,b]. Lete > 0 be given. Sincef is
uniformly continuous orja, b] there exist$ > 0 such that| f(s) — f(t)||s#) < eforall s,t €
la,b] with |s — t| < 6. Letny > 1 be such that for alk € {0,1,2,....,n0}, sx+1 — sx < d. Such
anng exists since the mesh of the partition tends to zero. Then, ferall, (corresponding to
finer partitions) we also have that,; —s\ < d forall A € {0,1,2,...,n}, and, by the definition
of f,, for s € [a, b]

1£(8) = fa(s)llBz) < max [[f(s) — f(sx)llBz) < e

0<A<n

since ifs € [sy, sx+1) thens — s\ < sy41 — sy < d. Thus ([3], Theorem 8)

AJMAA Vol. 13, No. 1, Art. 3, pp. 1-15, 2016 AIJMAA
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f(s) dmx 4(s)

[a,b]

= lim fn(s)dmx 4(s)

"0 Jlanb]

n

= lim Zf(SA) mx.g ([Sx, Sa41))

n—oo

A=0

—T}LIEOZf 5x) (@(sxr+1) — 0(50))

= lliiinﬁz f(s2) (@(sr11) — B(s1))

7. COMPUTATION OF MATRIX ELEMENTS

In the case of adapted processes, matrix elements

([ s0)ax6) v vm)
/ f1 dX / fa(s ng )

are computed with the use of Theorém|6.1 as follows and result in the familiar formulas of
guantum stochastic calculus [6,/ 12] 16]:

and

%f@ﬂ@wmww

=(lim D F(50) (9sai1) = d(51)) , (h))

n

—1111%2 (sx) ((sr+1) — @(sn)), ¥ (h))

and assuming decompositioffi§t) = f4 @ 1, X(t) = X ® 11, ¥(9) = ¥(gq) ® ¥(ge),
Y(h) = 1b(hy) @ ¥(h), as in Definitior] 3.3, we have

/de -ﬁﬁz (52) (X(sre1) = X (5)) ¥(0). (1)
= 11{1310 Z fs/\] 1/1 gsk ), 'QZ)( 5*})><X(S»SA+1] w(g(sk,skﬂ])v @Zj(h(s)\,s/wl])><¢(9(5x+1)7 ’(/)(h(s/\ﬂ»
A=0

=i S () ) [ () (0l )Pl D), (R,)
A=0 SX
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n

= lim Az:% /SAA+1 wx (8) ds (fo,1 1(9s,)) Y (hsy)) (W (9.,

])7 w(h@/\,s)\ﬂ])><w(g(sx+1)’ 77D(h(8>\+1)>

SA+1

n

= i, Z_: /:ﬂ wx (s)ds (f(sx)¥(g), ¥ (h))

wherewy is a simple function. In fact we may assume [8] that is a step function and that the
partitionII is so small that each intervgly, s, + 1] is contained in one of the disjoint intervals
definingwy. Letwx (s,) be the value ofvx in that interval. Then

( / £(5) dX () (g), ()

zlllenOZwX(S)\) <S>\+1 — 5)\) <f(3/\) ¢(g)v ¢(h)>

_ / w (s)(f(s) (), w(h)) ds

The computation of

( / f1(5) dX () (g). / Fals) dXa(s) (1)

is similar.

REFERENCES

[1] L. ACCARDI, A. FRIGERIO and J.T. LEWIS, Quantum Stochastic proced8ablications of the
R.I.M.S, Kyoto, 18 (1982), pp. 97-133.

[2] L. ACCARDI and M. SKEIDE, On the relation of the square of white noise and the finite difference
algebra, Infinite dimensional analysis, quantum probability and related t&foicS, no. 1, (2000),
pp. 185-189.

[3] R. G. BARTLE, A general bilinear vector integr&fudia Math, 15, (1956), pp. 337-352.

[4] R.G. BARTLE, N. DUNFORD and J.T. SCHWARTZ, Weak compactness and vector measures,
Canad. J. Math.7, (1955), pp. 289-305.

[5] S. BOCHNER, Integration von Functionen, deren Wert die Elemente eines Vektorraumes sind,
Fund. Math., 20, (1933), pp. 262-276.

[6] A. BOUKAS, An Example of a Quantum Exponential Proceds, Math, 112, (1991), pp. 209-
215.

[7] A. BOUKAS, Stochastic Calculus on the Finite - Difference Fock sp@ueantum Probability and
Related Topicsvol. VI., World Scientific, (1992), pp. 205-218.

[8] A. BOUKAS, Quantum Stochastic Analysis: a hon-Brownian ¢d&eD thesis, Southern lllinois
University, USA, 1988.

[9] A. M. CHEBOTAREYV, Lectures on Quantum Probabilithportaciones Matematicas 14, Sociedad
Matematica Mexicana, 2000.

[10] N. DINCULEANU, Vector Measuresinternational Series of Monographs in Pure and Applied
Mathematics\ol. 95, Pergamon Press, 1967.

AJMAA Vol. 13, No. 1, Art. 3, pp. 1-15, 2016 AIJMAA


http://ajmaa.org

BARTLE INTEGRATION IN LIE ALGEBRAS 15

[11] P. J. FEINSILVER, Discrete analogues of the Heisenberg-Weyl algttwaatshefte fur Mathe-
matik, 104, (1987).

[12] P.J. FEINSILVER, Lie algebras and recurrence relatiomscta Applicandae Mathematicag3,
(1988), pp. 291-333.

[13] P.J. FEINSILVER and R. SCHOTTAIgebraic Structures and Operator Calculus. Volumes | and
I, Kluwer, 1993.

[14] I. M. GEL'FAND, Sur un lemme de la theorie des espaces lineattag, Naukovodosl. Inst. Mat.
Mekh. Kharkov. Mat. Toy13(1), (1936), pp. 35-40

[15] R.L. HUDSON, Quantum stochastic calculus in Fock space: a rewewgdamental Aspects of
Quantum TheoryPlenum (1986).

[16] R. L. HUDSON, K. R. PARTHASARATHY, Quantum Ito’s formula and stochastic evolutions,
Commun. Math. Phys93, (1984), pp. 301-323.

[17] B.J. PETTIS, On integration in vector spac&sans. Amer. Math. Socd4, (1938), pp. 277-304.
[18] K. YOSIDA, Functional AnalysisSpringer-Verlag, 6th ed., 1980.

AJMAA Vol. 13, No. 1, Art. 3, pp. 1-15, 2016 AIJMAA


http://ajmaa.org

	1. Introduction
	2. Vector valued measures and Bartle's integral
	3. Bochner's Theorem and Quantum Stochastic Integrals
	4. Main Examples: The basic ingredients
	5. The Stieltjes measures in the FH and FFD cases
	6. Definition of the Stochastic Integral
	7. Computation of Matrix Elements
	References

