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ABSTRACT. By a partial dynamical system, we mean a triple containing a C*-algebra A, a
discrete group G and a partial action of G on A. There are two C*–algebras associated to a
given partial dynamical system. These are nothing but the certain C*-completions of a Banach
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apply. In this paper, we prove some theorems in this context without any limit process.
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1. I NTRODUCTION

In the last two decads, the notion of partial crossed product of aC∗-algebra by a discrete
group has been a very important tool inC∗-algebras and dynamical systems. As the name
suggests, partial action generalizes the notion of action in a set, in a topological space or in an
algebra.

In fact, the idea of partial crossed product of aC∗-algebra by a discrete group was introduced
by McClanahan [4] as a generalization of Exel’s work in [2]. It is well known that the notion
of the crossed product of aC∗-algebra by an action of a group uses a homomorphism into the
automorphism group of theC∗-algebra. Since we can not talk about a homomorphism from
a group into an inverse semigroup, the notion of partial action covers this flaw. That is, the
idea of partial action is to replace the automorphism group by the inverse semigroup of partial
automorphism. The general definitions of partial actions and crossed products by partial actions
of groups are introuced in [3]. By a partial automorphism of aC∗-algebraA, we mean a triple
(α, I, J) whereI andJ are closed two-sided ideals ofA and

α : I → J

is aC∗-isomorphism.

This paper is organized as follows:
Section 2 is devoted to multiplier algebras. Partial actions of groups are considered in Section

3, where one of the our main results is proved. In Section 4, actions of inverse semigroups are
introduced and two of our main results are proved.

2. M ULTIPLIER ALGEBRAS

Let A be a unitalC∗-algebra. We would like to construct a new unitalC∗-algebraD in which
A can be embedded as an ideal. For example, given aC∗-algebra,C0(X), if X is an open subset
of a compact Hausdorff spaceY , thenC0(X) is an ideal inC(Y ).

If I is a closed ideal in aC∗-algebraA, thenI⊥ = {x ∈ A : Ix = 0} is theannihilator of I.
Also, I⊥ is a closed ideal ofA, and ifI⊥ = {0}, thenI is essentialin A.

Theorem 2.1. Given aC∗-algebraA, there is a unitalC∗-algebraM(A) containingA as an
essential ideal.M(A) is universalin the sense that wheneverA embeds as an ideal inC∗-
algebraD, the identity map onA can be extended uniquely to a∗-homomorphism fromD into
M(A) with kernelA⊥. The algebraM(A), which is unique up to isomorphism overA, is called
the multiplier algebra ofA.

Proof. [1, II.7.3.1].

Elements ofM(A) are called double centralizer.
By a double centralizerof a C∗-algebraA, we mean a pair(L, R) of bounded linear maps

from A to A such that
xL(y) = R(x)y,

for all x, y ∈ A. More generally, aleft centralizerof A is a linear mapL : A → A satisfying
L(xy) = L(x)y, and aright centralizerof A is a linear mapR : A → A such thatR(xy) =
xR(y). If (L, R) is a double centralizer of aC∗-algebraA, then‖ L ‖=‖ R ‖, [5, Lemma
2.1.4]. For given(L, R) and(L′, R′) ∈ M(A) define their product and norm respectively by

(L, R)(L′, R′) = (LL′, R′R),
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‖(L, R)‖ = ‖L‖ = ‖R‖.
It is easy to check that this product is again a double centralizer of A. That is,M(A) is an

algebra under this multiplication.
For L : A → A, defineL∗ : A → A by L∗(a) = (L(a∗))∗. We will see thatL∗ is lin-

ear and the mapL → L∗ is an isometric conjugate-linear map fromB(A) to itself such that
(L∗)∗ = L and(LL′)∗ = (L′)∗L∗. This shows that if(L, R) is an element ofM(A) then so is
(L, R)∗ = (R∗, L∗). Thus, the map(L, R) 7→ (L, R)∗ is an involution onM(A).

Theorem 2.2. If A is aC∗-algebra, thenM(A) is aC∗-algebra under the multiplication, invo-
lution, and norm defined above.

Proof. [1, II. 7.3.4].

Let I be an ideal of aC∗-algebra A. Define the mapφ : I → M(I) by puttingφ(x) =
(Lx, Rx), x ∈ I. This is an algebra homomorphism, and moreover,Lxy = LxoLy, Rxy =
RyoRx, which gives

φ(xy) = (LxoLy, RyoRx) = φ(x)φ(y).

With the aid of the following Lemma, we can prove our main theorems.

Lemma 2.3. If I and J are ideals in aC∗-algebra A,π : I → J is aC∗-algebra isomorphism,
and(L, R) ∈ M(I), then

(πoLoπ−1, πoRoπ−1) ∈ M(J).

Proof. For arbitrary elementsa, b of J , there arex, y in I such thata = π(x), b = π(y) and

(πoLoπ−1)(ab) = (πoL)(xy) = π(L(xy)) = π(L(x)y)

= (πoL)(x)π(y) = (πoLoπ−1)(a)b;

(πoRoπ−1)(ab) = (πoR)(xy) = π(R(xy)) = π(xR(y))

= π(x)(πoR)(y) = a(πoRoπ−1)(b);

and

(πoRoπ−1)(a)b = (πoR)(x)b = π(R(x))π(y) = π(R(x)y)

= π(xL(y)) = a(πoL)(y) = a(πoLoπ−1)(b).

Hence,(πoLoπ−1, πoRoπ−1) is a double centralizer ofJ .

We know that closed ideals in aC∗- algebra are idempotent. Therefore, we can use the fol-
lowing proposition in the proof of our main theorems.

Proposition 2.4. If I is an idempotent algebra,I2 = I, and (L, R), (L′, R′) ∈ M(I), then
(R′oL)(a) = (LoR′)(a) for all a ∈ I.

Proof. Let a, b be arbitrary elements of I. By using the definition of double centralizers we have

(R′oL)(ab) = R′(L(ab)) = R′(L(a)b) = L(a)R′(b)

= L(aR′(b)) = L(R′(ab)) = (LoR′)(ab).

Since I is an idempotent algebra, it is easy to see that(R′oL)(a) = (LoR′)(a) for all a ∈ I.
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3. PARTIAL ACTIONS OF GROUPS

In this section, we deal with partial crossed products ofC∗- algebras by partial actions. There-
fore, introducing partial actions and their properties seems necessary.

The major new result of this section is the Theorem 3.1 Throughout this sectionA is aC∗-
algebra.

Definition 3.1. Let G be a discrete group with identitye. A partial action of G on A is a
collection{(θg, Dg−1 , Dg) : g ∈ G} of partial automorphisms such that

(i) De = A andθe is the identity map on A;
(ii) θ−1

h (Dh ∩Dg−1) ⊆ D(gh)−1;
(iii) θg(θh(x)) = θgh(x) for x ∈ θ−1

h (Dh ∩Dg−1).

It is not hard to see thatθh−1 = θ−1
h , θhoθ

−1
h is the identity map onDh and conditions (i)-(iii)

are equivalent to the following:
(i) De = A andθe is the identity map on A;
(ii)′ θg(Dg−1 ∩Dh) = Dg ∩Dgh;
(iii)′ θg(θh(x)) = θgh(x), for all x ∈ Dh−1 ∩D(gh)−1 .
Let L = {a ∈ `1(G, A) : a(g) ∈ Dg}. Also, letL have the norm, scalar multiplicaiton, and

addition inherited from the algebra`1(G, A). Before we define multiplication and involution on
L, let us agree on the following convention: We shall denote byagδg the element ofL which is
identically zero except for itsgth. component which is equal toag. Any element ofL, sayx, is
therefore given by

x =
∑
g∈G

agδg

where the sum has finitely many nonzero terms.
Based on [2] and [4], the definition of multiplication and involution onL is given by

(agδg)(bhδh) = θg(θg−1(ag)bh)δgh;

(agδg)
∗ = θg−1(a∗g)δg−1 .

Here, we will prove the main theorem of this section. That is, we will prove thatL with
the above defined multiplication is associative, without using limit process (compair with [4,
prop.2.1]).

Theorem 3.1.L is associative.

Proof. Obviously, L is associative if and only if

(agδgbhδh)ckδk = agδg(bhδhckδk)

for given elementsg, h, k of G andag ∈ Dg, bh ∈ Dh, andck ∈ Dk. The left hand side of the
above equality is nothing but

(agδgbhδh)ckδk = θg((θg−1)ag)bh)δghckδk

= θgh{θ(gh)−1 [θg(θg−1(ag)bh]ck}δghk.

Since ag ∈ Dg and θg−1 : Dg → Dg−1, we haveθg−1(ag) ∈ Dg−1, as a consequence,
θg−1(ag)bh ∈ Dg−1Dh = Dg−1 ∩ Dh, thereforeθg(θg−1(ag)bh) ∈ Dg ∩ Dgh, and we can split
θ(gh)−1 , which gives that

θ(gh)−1 [θg(θg−1(ag)bh)] = θh−1(θg−1(ag)bh).
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Also, sinceθh−1(θg−1(ag)bh) is an element ofDh−1∩Dh−1g−1 , we can splitθgh and consequently

(agδgbhδh)ckδk = θgh[θh−1(θg−1(ag)bh)ck]δghk

= θg{θh[θh−1(θg−1(ag)bh)ck]}δghk.

And, the right hand side is

agδg(bhδhckδk) = agδg[θh(θh−1(bh)ck)δhk]

= θg{θg−1(ag)[θh(θh−1(bh)ck)]}δghk.

If we applyθg−1 on the last equalities of the both sides we see that the equality holds if and only
if

θh[θh−1(θg−1(ag)bh)ck] = θg−1(ag)[θh(θh−1(bh)ck)]

is verified for allag ∈ Dg, bh ∈ Dh, andck ∈ Dk. Since

θg−1 : Dg → Dg−1

is an isomorphism, we see thatθg−1(ag) runs overDg−1, and as a consequence the equality holds
if and only if

θh[θh−1(agbh)ck] = ag[θh(θh−1(bh)ck)]

for everyag ∈ Dg−1 , bh ∈ Dh, andck ∈ Dk. If g = k = e, thenDg = Dk = A, andL is
associative if and only if the above equality holds for arbitraryh ∈ G, ag, ck ∈ A, andbh ∈ Dh.
Obviuosly, this equality is equivalent to say that

(θhoRck
oθh−1)oLag = Lago(θhoRck

oθh−1)

is valid onDh for everyh ∈ G and allag, ck ∈ A.
Let Rck

be a right multiplier onDh−1 andLag be a left multiplier onDh. By Lemma 2.3, we
see thatθhoRck

oθh−1 is a right multiplier onDh. Since all idealsDh(h ∈ G) are idempotent,
Proposition 2.4 implies that

(θhoRck
oθh−1)oLag = Lago(θhoRck

oθh−1).

4. ACTION OF AN I NVERSE SEMIGROUP

In this section, we will present the definition of anactionof an inverse semigroup on aC∗-
algebra. Then we will consider a Banach∗-algebra, whoseC∗-completion is nothing but the
C∗-crossed productA×θ S.

If A is any set, byI(A) we mean the inverse semigroup of all bijections between subsets of
A. The major new results of this section are Proposition 4.1 and Theorem 4.2

Here, we present the definition of an action of an inverse semigroup onC∗-algebra.

Definition 4.1. An action of an inverse semigroupS on aC∗-algebraA is a semigroup homo-
morphism

θ : S → I(A)

such that
(i) for everys ∈ S, the domain (and hence also the range) ofθs is a closed two sided ideal of

A, andθs is a∗-isomorphism.
(ii) the linear span of the union of the domains of allθs is dense in A.
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If e is an idempotent element ofS, we denote byEe the domain ofθe. Also, for eachs ∈ S,
we have thatθs is a∗-isomorphism fromEs∗ to Es. See also [6, Sec 3.3]. In fact,Es∗ andEs

are closed two-sided ideals in A and(θs, Es∗ , Es) is a partial automorphism of A. Note that, if
s ∈ S, then from the definition of inverse semigroup we havess∗s = s ands∗ss∗ = s∗. By
applyingθ on both sides of the above relations, we have

θs∗ = θ−1
s .

Throughout this section, by asemipartial dynamical system, we mean a triple(A, S, θ) in
which A is aC∗-algebra,S is a (not necessairly unital) inverse semigroup, andθ is an action of
S on A.

Let (A, S, θ) be a semipartial dynamical system. Take

L = {x ∈ `1(S, A) : x(s) ∈ Es}.
It is not hard to see that

L =
⊕
s∈S

Es.

If x ∈ L, thenx = (as)s∈S in which as ∈ Es andas = 0 for all but finitely manys. For
givens ∈ S andas ∈ Es, let asδs be the element ofL which is identically zero except for its
sth. component which is equal toas. Therefore any element ofL, sayx = (as)s∈S, is given
by x =

∑
s∈S

asδs, where the sum has finitely many nonzero terms. LetL have the norm, scalar

multiplication and, addition inherited from̀1(S, A). Based on [2] and [4] multiplication and
involution is given by

(asδs).(btδt) = θs(θs∗(as)bt)δst , and(asδs)
∗ = θs∗(a

∗
s)δs∗

for everys, t in S, as ∈ Es, andbt ∈ Et. By using [7, Prop.4.1] it is easy to see thatL is a
normed∗-algebra.

Here, let us present an auxiliary double centralizer which will be used in the proof of the
main theorem of this section.

Proposition 4.1. Given an inverse semigroupS, a C∗-algebraA, and a partial automorphism
(θs, Es∗ , Es) of A, if L andR are respectively, a left and a right centralizer ofEs∗, then

(θsoLoθs∗ , θsoRoθs∗) ∈ M(Es).

Proof. It is obvious thatθsoLoθs∗ andθsoRoθs∗ are linear transformations onEs. To prove that
(θsoLoθs∗ , θsoRoθs∗) is a multiplier ofEs, let θsoLoθs∗ = L′ andθsoRoθs∗ = R′. Forx ∈ A
anda, b ∈ Es, we have

L′x(ab) = θsoLx(θs∗(ab)) = θs(xθs∗(ab))

= θs(x)θs(θs∗(ab)) = θs(x)(ab),

and
L′(a)b = [θsoLx(θs∗(a))]b] = [θs(xθs∗(a))]b

= [θs(x)a]b = θs(x)(ab).

That is,L′(ab) = L′(a)b.
Also,

R′(ab) = (θsoRoθs∗)(ab) = θsoRx(θs∗(ab))

= θs(θs∗(ab)x) = (ab)θs(x),

and
aR′(b) = a(θsoRxoθs∗)(b) = a(θsoRx(θs∗(b))
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= aθs(θs∗(b)x) = a(bθs(x)) = (ab)θs(x),

therefore,
R′(ab) = aR′(b).

Finally,
R′(a)b = [(θsoRxoθs∗)(a)]b = [θsoRx(θs∗(a))]b

= [θs(θs∗(a)x)]b = [aθs(x)]b.

Also,
aL′(b) = a[(θsoLxoθs∗)b] = a[θsoLx(θs∗(b))]

= aθs(xθs∗(b)) = aθs(x)b.

That is,R′(a)b = aL′(b), and these facts show that(θsoLoθs∗ , θsoRoθs∗) is a multiplier ofEs.

Now, we would like to show that the normed∗-algebraL is associative with the multiplication
defined following the Definition 4.1. Note that the following result is proved in Proposition 4.1
of [7], and not only we are not assuming that our inverse semigroup is unital, but we will prove
the result without the approximate identity.

Theorem 4.2.The normed∗-algebraL is associative. (compare with[7, Prop.4.1.]

Proof. Let x =
∑
r∈S

arδr, y =
∑
s∈S

asδs, andz =
∑
t∈S

atδt are arbitrary elements ofL. We want to

show that
(x.y).z = x.(y.z).

It suffices to show this forx = arδr, y = asδs, andz = atδt.

(arδr.asδs).atδt = θr(θr∗(ar)as)δrs.atδt

= θrs{θ(rs)∗ [θr(θr∗(ar)as)]at}δrst

= θrs{θs∗r∗ [θr(θr∗(ar)as)]at}δrst

= θrs{θs∗ [θr∗(ar)as]at}δrst

= θr{θs(θs∗ [θr∗(ar)as]at)}δrst.

Note that, sincear ∈ Er andθr∗ : Er → Er∗ is aC∗-algebra isomorphism, we haveθr∗(ar) ∈
Er∗ andθr∗(ar)as ∈ Er∗Es = Er∗∩Es ⊂ Er∗. We used the fact thatθr∗r = θr∗θr is the identity
map onEr∗.

On the other hand,
arδr.(asδs.atδt) = arδr.[θs(θs∗(as)at)]δst

= θr{θr∗(ar)[θs(θs∗(as)at)]}δrst.

Therefore,L is associative if and only if

θr{θs(θs∗ [θr∗(ar)as]at)}δrst = θr{θr∗(ar)[θs(θs∗(as)at)]}δrst.

If we applyθr∗ to the both sides of the above equality, we see that equality holds if and only if

θs(θs∗ [θr∗(ar)as]at) = θr∗(ar)[θs(θs∗(as)at)].

Sinceθr∗ : Er → Er∗ is an isomorphism,θr∗(ar) runs overEr∗ and consequently, the last
equality is equivalent to

θs(θs∗ [a as]at) = a[θs(θs∗(as)at)]

for arbitrary elementsa in Er∗ , as ∈ Es, andat ∈ Et. If r = t, we haveEr = Et. Therefore, it
suffices to prove that

θs(θs∗ [a as]at) = a[θs(θs∗(as)at)]

for ar, at in Er, s ∈ S, andas ∈ Es.
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Let Rat be a right multiplier ofEs∗ and La be a left multiplier ofEs. By Lemma 2.3,
θsoRatoθs∗ is a right multiplier ofEs. Since A is aC∗-algebra and all closed ideals of A are
idempotent, by Proposition 2.4 we have

[(θsoRatoθs∗)oLa](as) = [Lao(θsoRatoθs∗)](as),

which is nothing but the desired equality.
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1999.

[7] N. SIEBEN,C∗-crossed products by partial actions and actions of inverse semigroups,J. Austral.
Math. Soc. Ser. A, 63 (1997), pp. 32–46.

AJMAA, Vol. 11, No. 1, Art. 7, pp. 1-8, 2014 AJMAA

http://ajmaa.org

	1.  Introduction
	2. Multiplier Algebras
	3. Partial Actions of Groups
	4. Action of An Inverse Semigroup
	References

