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ABSTRACT. By a partial dynamical system, we mean a triple containing a C*-algebra A, a
discrete group G and a partial action of G on A. There are two C*—algebras associated to a
given partial dynamical system. These are nothing but the certain C*-completions of a Banach
*-algebra. In constructing such a Banach *-algebra, usually, a tedious limit process is used to
apply. In this paper, we prove some theorems in this context without any limit process.

Key words and phrasesPartial automorphism, Partial action, Crossed productbfalgebra, Inverse semigroup and Partial
crossed product.

2010Mathematics Subject Classificat oA6L05.

ISSN (electronic): 1449-5910
(© 2014 Austral Internet Publishing. All rights reserved.


http://ajmaa.org/
mailto: <tabataba@math.susc.ac.ir>
mailto: <zebarjad@mail.yu.ac.ir>
http://research.shirazu.ac.ir/faculty/More.asp?ID=207
http://www.ams.org/msc/

2 BAHMAN TABATABAIE SHOURIJEH AND SEYED MOSTAFA ZEBARJAD

1. INTRODUCTION

In the last two decads, the notion of partial crossed product@f-algebra by a discrete
group has been a very important tool dff-algebras and dynamical systems. As the name
suggests, partial action generalizes the notion of action in a set, in a topological space or in an
algebra.

In fact, the idea of partial crossed product af'aalgebra by a discrete group was introduced
by McClanahan([]4] as a generalization of Exel's workl[in [2]. It is well known that the notion
of the crossed product of@*-algebra by an action of a group uses a homomorphism into the
automorphism group of thé™*-algebra. Since we can not talk about a homomorphism from
a group into an inverse semigroup, the notion of partial action covers this flaw. That is, the
idea of partial action is to replace the automorphism group by the inverse semigroup of partial
automorphism. The general definitions of partial actions and crossed products by partial actions
of groups are introuced in[3]. By a partial automorphism éf*aalgebraA, we mean a triple
(a, I, J) wherel and.J are closed two-sided ideals dfand

a:l —J
is aC*-isomorphism.

This paper is organized as follows:

Sectiorj 2 is devoted to multiplier algebras. Partial actions of groups are considered in Section
[3, where one of the our main results is proved. In Se¢fjon 4, actions of inverse semigroups are
introduced and two of our main results are proved.

2. MULTIPLIER ALGEBRAS

Let A be a unitalC*-algebra. We would like to construct a new unital-algebraD in which
A can be embedded as an ideal. For example, givenalgebraly(X), if X is an open subset
of a compact Hausdorff spaég thenCy(.X) is an ideal inC'(Y).

If is a closed ideal in &*-algebraA, then/+ = {x € A : Iz = 0} is theannihilator of I.
Also, It is a closed ideal ofi, and if I+ = {0}, then[ is essentiain A.

Theorem 2.1. Given aC*-algebra A, there is a unitalC*-algebra M (A) containingA as an
essential ideal. M (A) is universalin the sense that whenevedrembeds as an ideal i6™-
algebra D, the identity map oml can be extended uniquely toxehomomorphism fron® into
M (A) with kernelAL. The algebral/(A), which is unique up to isomorphism ovéris called
the multiplier algebra ofA.

Proof. [1, 11.7.3.1]. n

Elements of\/(A) are called double centralizer.

By a double centralizeof a C*-algebraA4, we mean a paifL, R) of bounded linear maps
from A to A such that

zL(y) = R(x)y,

for all x,y € A. More generally, aleft centralizerof A is a linear map. : A — A satisfying
L(zy) = L(x)y, and aright centralizerof A is a linear mapR : A — A such thatR(xy) =
zR(y). If (L, R) is a double centralizer of &*-algebraA, then| L ||=|| R |, [5, Lemma
2.1.4]. For given L, R) and(L', R') € M(A) define their product and norm respectively by

(L,R)(L',R") = (LL',R'R),
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1L, Rl = (LI = [zl

It is easy to check that this product is again a double centralizer of A. Thaf(igl) is an
algebra under this multiplication.

ForL : A — A, definel* : A — A by L*(a) = (L(a*))*. We will see thatL* is lin-
ear and the map — L* is an isometric conjugate-linear map fraB{A) to itself such that
(L*)* = Land(LL)* = (L')*L*. This shows that if L, R) is an element of/(A) then so is
(L, R)* = (R*, L*). Thus, the magL, R) — (L, R)* is an involution onM (A).

Theorem 2.2.1f A is aC*-algebra, thenV/ (A) is a C*-algebra under the multiplication, invo-
lution, and norm defined above.

Proof. [1, II. 7.3.4].a

Let | be an ideal of aC*-algebra A. Define the map : I — M(I) by putting¢(z) =
(Ly, R;), x € 1. This is an algebra homomorphism, and moreovgy, = L,oL,, R,, =
R,oR,, which gives

¢(zy) = (LyoLy, RyoR;) = d(x)d(y).

With the aid of the following Lemma, we can prove our main theorems.

Lemma 2.3.1f | and J are ideals in aC*-algebra A,r : I — J is aC*-algebra isomorphism,
and(L, R) € M(I), then
(roLom ™!, moRom™ ') € M(J).

Proof. For arbitrary elements, b of .J, there arer, y in | such thatu = 7 (x),b = 7(y) and
(moLom™")(ab) = (woL)(wy) = m(L(zy)) = (L(x)y)
= (moL)(x)7(y) = (roLom™")(a)b;
(moRor™")(ab) = (moR)(xy) = n(R(xy)

) = m(zR(y))
m(x)(moR)(y) = a(roRor")(b);

and

(roRom™*)(a)b = (roR)(x)b = m(R(x))n(y) = 7(R(z)y)
= m(zL(y)) = a(moL)(y) = a(moLor')(b).
Hence,(roLor™!, moRom™ ") is a double centralizer of. &

We know that closed ideals in@*- algebra are idempotent. Therefore, we can use the fol-
lowing proposition in the proof of our main theorems.

Proposition 2.4. If | is an idempotent algebral> = I, and (L, R), (L', R") € M(I), then
(R'oL)(a) = (LoR')(a) forall a € I.

Proof. Leta, b be arbitrary elements of I. By using the definition of double centralizers we have
(R'oL)(ab) = R'(L(ab)) = R'(L(a)b) = L(a)R'(b)

= L(aR'(b)) = L(R'(ab)) = (LoR')(ab).
Since | is an idempotent algebra, it is easy to see(thatl)(a) = (LoR')(a) foralla € I. 1
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3. PARTIAL ACTIONS OF GROUPS

In this section, we deal with partial crossed productS‘tfalgebras by partial actions. There-
fore, introducing partial actions and their properties seems necessary.

The major new result of this section is the Theofenj 3.1 Throughout this setti®a C*-
algebra.

Definition 3.1. Let G’ be a discrete group with identity, A partial actionof G on A is a
collection{(0,, D,-1, D) : g € G} of partial automorphisms such that

(i) D. = A andd. is the identity map on A;

(i) 0, (Dn N Dy-1) C Dgny-1;

(iii) 0,0 (7)) = Ogn(z) for z € 6,1 (Dy, N Dy-1).

Itis not hard to see thal, + = 0, ', 0,00, " is the identity map oD;, and conditions (i)-(iii)
are equivalent to the following:

(1) D, = A andd, is the identity map on A;

(ZZ)/ eg(Dg—l N Dh) = Dg N Dgh;

(ZZ’L), 99(0h(3:)) = Qgh(l'), forallz € D)1 N D(gh)—l.

Let L = {a € (*(G,A) : a(g) € D,}. Also, let L have the norm, scalar multiplicaiton, and
addition inherited from the algebrfa(G, A). Before we define multiplication and involution on
L, let us agree on the following convention: We shall denote oy the element of. which is
identically zero except for itg’ component which is equal tg,. Any element off, sayz, is

therefore given by
xr = Z g0y

geG
where the sum has finitely many nonzero terms.
Based onl[2] and |4], the definition of multiplication and involution i given by

(ag(sg) (bhéh) = Qg(eg*1 (ag)bh)égh;

(ag(sg)* = ‘99‘1<a;)59‘1'
Here, we will prove the main theorem of this section. That is, we will prove thaifith
the above defined multiplication is associative, without using limit process (compairlwith [4,

prop.2.1]).

Theorem 3.1.L is associative.

Proof. Obviously, L is associative if and only if
(ag04bron)Ckdr = ay0y(bpdnckd)

for given elementg, i, k of G anda, € D, b, € Dy, andc; € D;. The left hand side of the
above equality is nothing but

(agégbhéh)ckék = 99((9g71)ag)bh)5ghck5k
= Ogn{0(gn)-1109(0g—1 (ag)bnlck }ogni-
Sincea, € D, andf,-» : D, — D,1, we havef,1(a;,) € D,1, as a consequence,

0,-1(ag)by, € Dy-1Dy = Dy-1 N Dy, therefored,(0,-1(aq)by) € Dy N Dy, and we can split
0 gn)-1, Which gives that

e(gh)*l[gg(egfl(ag)bh)] = 9h71(9g*1(ag)bh)-
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Also, sincefy,-1(0,-1(ay)by) is an element obj,-1 N Dj-1,-1, we can splif,;, and consequently

(agdgbh5h)ck(5k = 99h[0h_1(99_1(ag)bh)ck]éghk
= 0{01[0n—1(05-1(ag)bn)ck]}gni-
And, the right hand side is

agég(bh5hck5k) = agég[é’h(ﬁhfl (bh)ck)éhk]

= 0y{0y-1(ag)[0n(0n—1(br)ck)] }ognk-
If we applyd,-1 on the last equalities of the both sides we see that the equality holds if and only
if
On[0-1(0g-1(ag)br)crk] = O4-1(ag)[0n(0n-1(br)cr)]
is verified for alla, € Dy, b, € Dy, andc;, € Dy,. Since

99—1 : Dg — Dgfl

is an isomorphism, we see thgt: (a,) runs overD,-1, and as a consequence the equality holds
if and only if

Gh[Gh_l(agbh)ck] = ag[Oh(Hh_1(bh)ck)]
for everya, € Dy-1,b, € Dy,andc, € Dy. If g = k = e, thenD, = D, = A, andL is
associative if and only if the above equality holds for arbitrary G, a,, ¢, € A, andby, € Dy,
Obviuosly, this equality is equivalent to say that

(QhORck OQh—l )OLag = La90<9hORck O@h—l )

is valid onD,, for everyh € G and alla,, ¢, € A.

Let R., be aright multiplier onD;,- andL,, be a left multiplier onD;. By Lemmd 2.3, we
see that,oR,., 00,1 is a right multiplier onD,,. Since all idealdD,(h € G) are idempotent,
Propositior) 2.4 implies that

(OhoR.,00,-1)0Ls, = La,0(0,0R., 005-1).

4. ACTION OF AN INVERSE SEMIGROUP

In this section, we will present the definition of antion of an inverse semigroup on&*-
algebra. Then we will consider a Banagfalgebra, whosé€*-completion is nothing but the
C*-crossed productl x4 S.

If Ais any set, byl (A) we mean the inverse semigroup of all bijections between subsets of
A. The major new results of this section are Proposftiop 4.1 and Thegorém 4.2

Here, we present the definition of an action of an inverse semigroup eaigebra.

Definition 4.1. An action of an inverse semigroupon aC*-algebraA is a semigroup homo-
morphism
6:5—I(A)
such that
(i) for everys € S, the domain (and hence also the range).at a closed two sided ideal of
A, andd, is ax-isomorphism.
(ii) the linear span of the union of the domains oféllis dense in A.

AJMAA Vol. 11, No. 1, Art. 7, pp. 1-8, 2014 AIJMAA


http://ajmaa.org

6 BAHMAN TABATABAIE SHOURIJEH AND SEYED MOSTAFA ZEBARJAD

If eis an idempotent element 6f we denote by, the domain of).. Also, for eachs € S,
we have that, is ax-isomorphism fromE,- to E,. See also [6, Sec 3.3]. In fadt,- andE,
are closed two-sided ideals in A a(dl, F.-, E) is a partial automorphism of A. Note that, if
s € S, then from the definition of inverse semigroup we havés = s ands*ss* = s*. By
applyingd on both sides of the above relations, we have

05* — 05_1

Throughout this section, by semipartial dynamical systenwe mean a triplg A, .S, 0) in
which A'is aC*-algebra,S is a (not necessairly unital) inverse semigroup, @mlan action of
SonA.

Let (A, S, #) be a semipartial dynamical system. Take

L={xel(S A):z(s) € E}.

L:@Es.

seS
If z € L, thenz = (as)ses in Whicha, € E; anda, = 0 for all but finitely manys. For
givens € S anda, € FE, leta,d, be the element of which is identically zero except for its
st component which is equal te,. Therefore any element df, sayr = (a,).cs, IS given

by z = > as0s, where the sum has finitely many nonzero terms. L&ave the norm, scalar
seS

multiplication and, addition inherited frorfi (S, A). Based on[[2] and [4] multiplication and
involution is given by

(a505).(bi0r) = O5(0s+(as)by)ds , and(ag0s)* = s« (a})o s

for everys,tin S,a, € E,, andb, € E,. By using [7, Prop.4.1] it is easy to see thais a
normeds«-algebra.

Here, let us present an auxiliary double centralizer which will be used in the proof of the
main theorem of this section.

It is not hard to see that

Proposition 4.1. Given an inverse semigroup, a C*-algebra A, and a partial automorphism
(05, Es, E) of A, if L and R are respectively, a left and a right centralizer Bf-, then

(Os0Lobg+, 0;0R004) € M(Es).

Proof. Itis obvious that ,oLof - andf,oRof - are linear transformations ari,. To prove that
(fsoLobs, 0;0R00,-) is a multiplier of £y, let0,0Lo0,« = L’ andfsoRofs« = R'. Forx € A
anda, b € E,, we have

L (ab) = 0,0L, (0, (ab)) = O,(20)-(ab))
(

= (98(.%)(93(95*(@[?)) (93 m)( )
and
L'(a)b = [0.0Lx(0s-(a))]b] = [0s(20-(a))]b
= [0s(x)alb = 0(x)(ab).
Thatis,L/(ab) = L'(a)b.
Also,
R'(ab) = (850R004)(ab) = 6,0R, (0« (ab))

— 0,(6.+(ab)r) = (ab)6,(x),

aR'(b) = a(0,0R,004)(b) = a(0;0R,(6s (D))

and
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— 08,0 (0)) = a(bh,(x)) = (ab)F, ().

therefore,
R'(ab) = aR'(b).
Finally,
R(a)b = [(0s0R;00)(a)]b = [0s0Rs (0 (a))]b
= [05(05(a)x)]b = [ab,(x)]b.
Also,

al(b) = a[(0;0L,004)b] = alfs0L,(0s(b))]
= als(204 (b)) = abs(x)b.
Thatis,R'(a)b = aL'(b), and these facts show th@oLob -, 0,0 Ro0,-) is a multiplier of £;. §
Now, we would like to show that the normeehlgebral. is associative with the multiplication
defined following the Definitioh 4]1. Note that the following result is proved in Proposition 4.1

of [[7], and not only we are not assuming that our inverse semigroup is unital, but we will prove
the result without the approximate identity.

Theorem 4.2. The normedk-algebral is associative. (compare wiffd, Prop.4.1.]

Proof. Letz = > a,d,,y = >_ asds, andz = > a0, are arbitrary elements df. We want to
resS seS tesS
show that

(x.y).z = x.(y.2).

It suffices to show this fox = a,.9,,y = asd,, andz = a;9;.
(ar6y.a505).a10; = 0,.(0,+(ar)as)0rs.a10;

= Qrs{e(rs)*[er(er*(ar)as)]at}érst

= Qrs{es*r* [97"(97'* (ar)as)]at}(srst

= ers{es* [97“* (ar)as]at}arst

- 07’{05(95* [97‘* (ar)as]at>}5rst~
Note that, since, € E, andf,- : E, — E,. is aC*-algebra isomorphism, we ha¥g. (a,) €
E,- andf,-(a,)as € E.«E; = E.«NEs C E,.~. We used the fact thaéf., = 0,0, is the identity
map onk,..

On the other hand,
ay0,.(a505.0:0¢) = a,0,..[05(0s (as)ar)] st

- er{er* (CL7«> [‘93 (es* (as)atﬂ }57'315-
Therefore,L is associative if and only if
0,400 [0+ (ar)as]ar) } 6,5t = 0,40, (ar)[0s (05 (as)ar)]}Ors-
If we applyd,- to the both sides of the above equality, we see that equality holds if and only if

0505+ [0, (ar)as]ar) = 0, (a,)[0s(0s+ (ag)ay)].
Sinced,. : E, — E,.. is an isomorphismé,-(a,) runs overE,. and consequently, the last
equality is equivalent to
0s(0s+[a aglay) = a[0s(0s+(as)ay)]
for arbitrary elements in E,-,a, € E,, anda, € E;. If r = t, we havek, = E;. Therefore, it
suffices to prove that

0s(0s+[a aglay) = a[0s(0s+(as)ay)]
fora,,a;Iin E,,s € S,anda, € E,.
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Let R,, be a right multiplier ofE,. and L, be a left multiplier of E,. By Lemma[ 2.3,
0s0R,, 00, is a right multiplier of E;. Since A is aC*-algebra and all closed ideals of A are
idempotent, by Propositign 2.4 we have

[(050R,, 004 )0Lg](as) = [La0(0s0Rq,004)](as),
which is nothing but the desired equalily.
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