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2 SHUHEI WADA

1. I NTRODUCTION .

Let M+ be the set of complex positive definite matrices. ForA, B ∈ M+, the geometric
meanA#B = A

1
2 (A

−1
2 BA

−1
2 )

1
2 A

1
2 and the path of the geometric means

A#xB = A
1
2 (A

−1
2 BA

−1
2 )xA

1
2 (0 ≤ x ≤ 1)

have been widely discussed in the literature.
On the other hand, a new path of operator means can be defined as

A#̂xB = x(xB−1+(1− x)(A#B)−1)−1

+ (1− x)((1− x)A−1 + x(A#B)−1)−1 (0 ≤ x ≤ 1),

and this is called the “Barbour path" [3]. The functionsx 7→ A#xB andx 7→ A#̂xB interpolate
the points{(0, A), (1

2
, A#B), (1, B)} and are convex. Concerning this, an inequality between

the integrals of these paths was shown by Nakamura [4], as follows:∫ 1

0

A#̂xBdx ≤
∫ 1

0

A#xBdx.

Some properties of the one-parameter family

{ 1

2p

∫ 1
2
+p

1
2
−p

A#̂xBdx}0≤p≤ 1
2

are also shown [4]. This family is analogous to the family{ 1
2p

∫ 1
2
+p

1
2
−p

A#xBdx}0≤p≤ 1
2
, which

was described in [1].
The purpose of the present paper is to generalize the above inequality by using the above

one-parameter family. To see this, we prove the following inequality

(1.1)
1

2
(A#̂xB + A#̂1−xB) ≤ 1

2
(A#xB + A#1−xB) (0 ≤ x ≤ 1);

the method is elementary, but the calculations are a bit complicated. We then discuss some
related inequalities.

2. PRELIMINARIES .

Since each side of the inequality (1.1) is an operator mean in the sense of Kubo-Ando [2],
(1.1) is equivalent to the inequality between its representation functions. The function which
represents the right side ist 7→ 1

2
(tx + t1−x), and the one that represents the left side ist 7→

1
2
(I#̂x(tI) + I#̂1−x(tI)), where

I#̂x(tI) =
x

t−1x +
√

t−1(1− x)
+

1− x√
t−1x + (1− x)

=
tx +

√
t(1− x)

x +
√

t(1− x)
.

Thus inequality (1.1) is equivalent to

1

2

(
tx +

√
t(1− x)

x +
√

t(1− x)
+

t(1− x) +
√

tx

(1− x) +
√

tx

)
≤ tx + t1−x

2

for all t > 0, x ∈ [0, 1], and it can be rewritten as
√

t
(√

t + 1
)2(√

t
x

+
√

t
1−x
)2 −

((
1−

√
t
)

(1− x) +
√

t
) ((

1−
√

t
)

x +
√

t
)
≤ 0.
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We then let

α(s, x) =
s (s + 1)2

(sx + s1−x)2 − ((1− s) (1− x) + s) ((1− s) x + s)

and prove thatα(s, x) ≤ 0 for anyx ∈ [0, 1], s > 0. Since

α(s, x) = s2α(
1

s
, x) = α(s, 1− x)

and

α(s, 1) = α(s, 0) = α(s,
1

2
) = α(1, x) = 0,

it is enough to prove it for the case wheres ∈ (0, 1) and0 < x < 1
2
.

In the next section, we determine the upper bound ofα(s, x) by considering the behavior of
the second derivative:

∂2

∂x2
α(s, x) = 2 s (s + 1)2 log2 s

(
3 (sx − s1−x)

2

(sx + s1−x)2 − 1

)(
sx + s1−x

)−2
+ 2 (1− s)2 .

3. BEHAVIOR OF α.

For s ∈ (0, 1) andx ∈ (0, 1
2
), put

β(s, x) =
(
sx + s1−x

)−2

(
3 (sx − s1−x)

2

(sx + s1−x)2 − 1

)
.

By performing an elementary calculation, we obtain the following: fors ∈ (0, 1), there exists
xs ∈ [0, 1

2
) such that{x ∈

(
0, 1

2

]
| β(s, x) < 0} =

(
xs,

1
2

]
. Combining this fact and

∂2

∂x2
α(s, x) = 2 s (s + 1)2 (log s)2 β(s, x) + 2 (1− s)2

with
∂2

∂x2
α(s, x)

∣∣∣
x=0

> 0,
∂2

∂x2
α(s, x)

∣∣∣
x=1/2

< 0,

we get the next lemma.

Lemma 3.1. For s ∈ (0, 1), there existsxs ∈ (0, 1
2
) such that

{x ∈
[
0, 1

2

]
| ∂2

∂x2
α(s, x) < 0} = (xs,

1
2
].

Thanks to this lemma and
∂

∂x
α(s, x)

∣∣∣
x=0

< 0,
∂

∂x
α(s, x)

∣∣∣
x=1/2

= 0,

the following is obtained.

Lemma 3.2. For s ∈ (0, 1), there existsxs ∈ (0, 1
2
) such that

{x ∈
[
0, 1

2

]
| ∂

∂x
α(s, x) ≤ 0} = [0, xs], {x ∈

[
0, 1

2

]
| ∂

∂x
α(s, x) > 0} = (xs,

1
2
].

From this lemma, we haveα(s, x) ≤ α(s, 0) = α(s, 1
2
) = 0. Thus the following inequalities

are obtained.
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Theorem 3.3.For A, B ∈M+,

A#B ≤ 1

2
(A#̂xB + A#̂1−xB) ≤ 1

2
(A#xB + A#1−xB) (0 ≤ x ≤ 1),

where

A#̂xB = x(xB−1 + (1− x)(A#B)−1)−1 + (1− x)((1− x)A−1 + x(A#B)−1)−1.

Proof. As was stated in [3], the functionx 7→ A#̂xB is convex on[0, 1], which implies the first
inequality. The second one follows from Lemma 3.2.

By integrating both sides of the preceding inequalities, we have the following.

Corollary 3.4. For p ∈ [0, 1
2
],

A#B ≤ 1

2p

∫ 1
2
+p

1
2
−p

A#̂xBdx ≤ 1

2p

∫ 1
2
+p

1
2
−p

A#xBdx.

4. RELATED INEQUALITIES .

Several lower bounds for the logarithmic mean have been studied in the literature [5]. Among
these, a notably curious one is the inequality

t + t
1
3

1 + t
1
3

≤ t− 1

log t

for all t > 0. Both sides of this are normalized, positive, operator monotone functions on

(0,∞), and the left-hand side of that is the midpoint of the Barbour pathtx+t
1
3 (1−x)

x+t
1
3 (1−x)

.

On the other hand, an interesting lower bound for the logarithmic mean was given by Naka-
mura [4]: ∫ 1

0

tx + t
1
2 (1− x)

x + t
1
2 (1− x)

dx ≤
∫ 1

0

txdx =
t− 1

log t
.

In this section, the relationship between these bounds is discussed.

Proposition 4.1. ∫ 1

0

tx + t
1
2 (1− x)

x + t
1
2 (1− x)

dx ≤ t + t
1
3

1 + t
1
3

for all t > 0.

Proof. Since∫ 1

0

tx + t
1
2 (1− x)

x + t
1
2 (1− x)

dx =

√
t ((t + 1) log t− 2( t− 1)) + 2 t log t

2( t− 1)
,

we shall show the following :
√

t ((t + 1) log t− 2( t− 1)) + 2 t log t

2( t− 1)
≤ t + t

1
3

1 + t
1
3

.

For t ≥ 1, the above inequality can be rewritten as

2 (t−1)
�
t+t

1
3

�

t
1
3 +1

+ 2 (t− 1)
√

t
√

t (t + 1) + 2 t
− log t ≥ 0.
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The first derivative of the left side is(
t

1
12 − 1

)4 (
t

1
12 + 1

)4 (
t

1
6 − t

1
12 + 1

) (
t

1
6 + t

1
12 + 1

)
3
(
t

11
12 + 2 t

7
12 + t

1
4

)
t

11
12

,

which is clearly positive. Thanks to
2 (t−1)

�
t+t

1
3

�

t
1
3 +1

+ 2 (t− 1)
√

t
√

t (t + 1) + 2 t
− log t


∣∣∣∣∣
t=1

= 0,

the desired inequality holds fort ≥ 1.
For0 < t < 1, it follows from the above argument that∫ 1

0

tx + t
1
2 (1− x)

x + t
1
2 (1− x)

dx =

∫ 1

0

t(1− x) + t
1
2 x

1− x + t
1
2 x

dx

= t

∫ 1

0

t−1x + t
−1
2 (1− x)

x + t
−1
2 (1− x)

dx

≤ t
t−1 + t

−1
3

1 + t
−1
3

=
t + t

1
3

1 + t
1
3

.

Corollary 4.2. For t > 0,

t + t
1
2

1 + t
1
2

≤
∫ 1

0

tx + t
1
2 (1− x)

x + t
1
2 (1− x)

dx ≤ t + t
1
3

1 + t
1
3

≤
∫ 1

0

txdx.

Corollary 4.3. For A, B ∈M+,

A#B ≤
∫ 1

0

A#̂xB dx

≤ (B−1 + (A# 2
3
B)−1)−1 + (A−1 + (A# 1

3
B)−1)−1

≤
∫ 1

0

A#xBdx.
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