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ABSTRACT. We provide strong solutions to partial differential equations when the function is
non-differentiable.
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2 M. A LGHALITH

This note overcomes a major obstacle in the area of (stochastic) partial differntial equations
and their applications. In so doing, it provides strong solutions to partial differential equations
when the function is non-differentiable. It is established that if the function is non-differentiable,
the existing methods adopt viscosity and minimax weak solutions (see, for example, Crandall
and Lions (1983), among many others). Below is a description of the method.

We express the functionH (x) asH (x + ε), whereε is a shift parameter with an initial value
equal to zero (see Alghalith (2008), among others). IfH (x) is differentiable with respect tox,

we have

Hx = Hε; Hxx = Hεε,

where the subscript denotes a partial derivative. Therefore we can substituteHδ for Hx even if
H is not differentiable with respect tox.

Consider this functionH (x, y) ; it can be expressed asH (x + ε, ϕy) , whereϕ is a shift
parameter with an initial value equal to one (see Alghalith (2008), among others). We define
f ≡ x + ε, g ≡ ϕy; differentiatingH (f, g) with respect tox andε, respectively, yields

(1.1) Hx = Hf = Hε; Hxx = Hff = Hεε.

Similarly, differentiatingH (f, g) with respect toϕ andy, respectively, yields

Hϕ = Hgy; Hy = Hgϕ.

Thus

(1.2)
Hy

Hϕ

=
ϕ

y
⇒ Hy =

ϕHϕ

y
.

It is also clear that the second derivatives ofH (g, y) with respect toϕ andy, respectively, are

(1.3) Hϕϕ = Hggy
2; Hyy = ϕ2Hgg.

Therefore

(1.4)
Hyy

Hϕϕ

=
y2

ϕ2
⇒ Hyy =

ϕ2Hϕϕ

y2
.

Using(1.2), we obtain

(1.5) Hyx =
ϕHϕf

y
=

ϕHϕx

y
=

ϕHϕε

y
.

For example, we consider the following known Hamilton-Jacobi-Bellman PDE (however our
approach is virtually applicable to any form of PDEs)

(1.6) Hx + +a (.) Hy + b (.) Hyy + e (.) Hxy = 0.

Substituting(1.1)− (1.5) into (1.6) yields

Hε + a (.)
ϕHϕ

y
+ b (.) ϕ2Hgg + e (.)

ϕHϕε

y
= 0.
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